Advancing neural computation: experimental validation and optimization of dendritic learning in feedforward tree networks.

American journal of neurodegenerative disease Pub Date : 2024-12-25 eCollection Date: 2024-01-01 DOI:10.62347/FIQW7087
Seyed-Ali Sadegh-Zadeh, Pooya Hazegh
{"title":"Advancing neural computation: experimental validation and optimization of dendritic learning in feedforward tree networks.","authors":"Seyed-Ali Sadegh-Zadeh, Pooya Hazegh","doi":"10.62347/FIQW7087","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to explore the capabilities of dendritic learning within feedforward tree networks (FFTN) in comparison to traditional synaptic plasticity models, particularly in the context of digit recognition tasks using the MNIST dataset.</p><p><strong>Methods: </strong>We employed FFTNs with nonlinear dendritic segment amplification and Hebbian learning rules to enhance computational efficiency. The MNIST dataset, consisting of 70,000 images of handwritten digits, was used for training and testing. Key performance metrics, including accuracy, precision, recall, and F1-score, were analysed.</p><p><strong>Results: </strong>The dendritic models significantly outperformed synaptic plasticity-based models across all metrics. Specifically, the dendritic learning framework achieved a test accuracy of 91%, compared to 88% for synaptic models, demonstrating superior performance in digit classification.</p><p><strong>Conclusions: </strong>Dendritic learning offers a more powerful computational framework by closely mimicking biological neural processes, providing enhanced learning efficiency and scalability. These findings have important implications for advancing both artificial intelligence systems and computational neuroscience.</p>","PeriodicalId":72170,"journal":{"name":"American journal of neurodegenerative disease","volume":"13 5","pages":"49-69"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of neurodegenerative disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62347/FIQW7087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study aims to explore the capabilities of dendritic learning within feedforward tree networks (FFTN) in comparison to traditional synaptic plasticity models, particularly in the context of digit recognition tasks using the MNIST dataset.

Methods: We employed FFTNs with nonlinear dendritic segment amplification and Hebbian learning rules to enhance computational efficiency. The MNIST dataset, consisting of 70,000 images of handwritten digits, was used for training and testing. Key performance metrics, including accuracy, precision, recall, and F1-score, were analysed.

Results: The dendritic models significantly outperformed synaptic plasticity-based models across all metrics. Specifically, the dendritic learning framework achieved a test accuracy of 91%, compared to 88% for synaptic models, demonstrating superior performance in digit classification.

Conclusions: Dendritic learning offers a more powerful computational framework by closely mimicking biological neural processes, providing enhanced learning efficiency and scalability. These findings have important implications for advancing both artificial intelligence systems and computational neuroscience.

推进神经计算:前馈树网络中树突学习的实验验证与优化。
目的:本研究旨在探索前馈树网络(FFTN)中树突学习的能力,并与传统的突触可塑性模型进行比较,特别是在使用MNIST数据集的数字识别任务的背景下。方法:采用带有非线性树突段放大和Hebbian学习规则的FFTNs来提高计算效率。MNIST数据集由70,000张手写数字图像组成,用于训练和测试。分析了关键性能指标,包括准确性、精密度、召回率和f1分数。结果:树突模型在所有指标上都明显优于基于突触可塑性的模型。具体来说,树突学习框架的测试准确率达到91%,而突触模型的测试准确率为88%,这表明树突学习框架在数字分类方面表现优异。结论:树突学习通过密切模仿生物神经过程提供了一个更强大的计算框架,提供了更高的学习效率和可扩展性。这些发现对于推进人工智能系统和计算神经科学具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信