Insilico and Invivo protective effect of biochanin-A mitigating doxorubicin- induced cognitive deficits and neuroinflammation: Insights to the role of p-Tau and miR-132.

IF 3.4 3区 医学 Q2 NEUROSCIENCES
Sarah A Hussein, Mai F Tolba, Haidy E Michel, Amgad Albohy, Samar S Azab
{"title":"Insilico and Invivo protective effect of biochanin-A mitigating doxorubicin- induced cognitive deficits and neuroinflammation: Insights to the role of p-Tau and miR-132.","authors":"Sarah A Hussein, Mai F Tolba, Haidy E Michel, Amgad Albohy, Samar S Azab","doi":"10.1016/j.neuro.2025.01.003","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOX)-induced chemobrain has been reported in several studies. Its main culprit is the induction of massive amounts of reactive oxygen species (ROS), hence triggering damage to brain tissues and thus leading to neuroinflammation. Biochanin A (BIO-A) is known to be an antioxidant, anti-inflammatory, and neuroprotective agent. An insilico study was designed to examine the potential neuroprotective effect of BIO-A. An invivo study was used to evaluate the modulatory effect of BIO-A on cognitive impairment engendered by DOX. The insilico investigation proved the putative neuroprotective effect of BIO-A. In the invivo study, BIO-A treatment counteracted DOX-induced memory deficits, as evidenced by improved spatial memory in rats compared to the DOX-only group. BIO-A also reversed DOX-triggered hippocampal neurodegeneration and neuroinflammation, supported by a significant decrease in tissue contents of NF-κB (p65) by 32% and NLRP3 by 36% versus the DOX-only group. BIO-A also abrogated DOX-induced neurodegneration, as evidenced by increasing SIRT1 content by 2-fold and BDNF content by 2-fold versus the DOX-only group in hippocampal tissues. In addition, BIO-A ameliorated DOX-augmented apoptosis in the hippocampus, as evidenced by lowering caspase-3 content in the hippocampus by 26% versus the DOX-only group. Regarding tauopathy, BIO-A reversed DOX-increased tauopathy by 35% versus the DOX-only group. The neuroprotectant miR-132 was increased by BIO-A in hippocampal tissues by 4-fold, contrary to the DOX-only group. Thus, BIO-A treatment modulated DOX-induced behavioral, histological, and molecular changes in the hippocampi of rats. Further studies are recommended to evaluate BIO-A in early clinical trials for the purpose of protection against chemobrain in cancer patients.</p>","PeriodicalId":19189,"journal":{"name":"Neurotoxicology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuro.2025.01.003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Doxorubicin (DOX)-induced chemobrain has been reported in several studies. Its main culprit is the induction of massive amounts of reactive oxygen species (ROS), hence triggering damage to brain tissues and thus leading to neuroinflammation. Biochanin A (BIO-A) is known to be an antioxidant, anti-inflammatory, and neuroprotective agent. An insilico study was designed to examine the potential neuroprotective effect of BIO-A. An invivo study was used to evaluate the modulatory effect of BIO-A on cognitive impairment engendered by DOX. The insilico investigation proved the putative neuroprotective effect of BIO-A. In the invivo study, BIO-A treatment counteracted DOX-induced memory deficits, as evidenced by improved spatial memory in rats compared to the DOX-only group. BIO-A also reversed DOX-triggered hippocampal neurodegeneration and neuroinflammation, supported by a significant decrease in tissue contents of NF-κB (p65) by 32% and NLRP3 by 36% versus the DOX-only group. BIO-A also abrogated DOX-induced neurodegneration, as evidenced by increasing SIRT1 content by 2-fold and BDNF content by 2-fold versus the DOX-only group in hippocampal tissues. In addition, BIO-A ameliorated DOX-augmented apoptosis in the hippocampus, as evidenced by lowering caspase-3 content in the hippocampus by 26% versus the DOX-only group. Regarding tauopathy, BIO-A reversed DOX-increased tauopathy by 35% versus the DOX-only group. The neuroprotectant miR-132 was increased by BIO-A in hippocampal tissues by 4-fold, contrary to the DOX-only group. Thus, BIO-A treatment modulated DOX-induced behavioral, histological, and molecular changes in the hippocampi of rats. Further studies are recommended to evaluate BIO-A in early clinical trials for the purpose of protection against chemobrain in cancer patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurotoxicology
Neurotoxicology 医学-毒理学
CiteScore
6.80
自引率
5.90%
发文量
161
审稿时长
70 days
期刊介绍: NeuroToxicology specializes in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasizes papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信