Probing structural requirements for thiazole-based mimetics of sunitinib as potent VEGFR-2 inhibitors.

IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alaa A Abd Elhameed, Ahmed R Ali, Hazem A Ghabbour, Said M Bayomi, Nadia S El-Gohary
{"title":"Probing structural requirements for thiazole-based mimetics of sunitinib as potent VEGFR-2 inhibitors.","authors":"Alaa A Abd Elhameed, Ahmed R Ali, Hazem A Ghabbour, Said M Bayomi, Nadia S El-Gohary","doi":"10.1039/d4md00754a","DOIUrl":null,"url":null,"abstract":"<p><p>Novel thiazole analogs 3a, 3b, 4, 5, 6a-g, 8a, 8b, 9a-c, 10a-d and 11 were designed and synthesized as molecular mimetics of sunitinib. <i>In vitro</i> antitumor activity of the obtained compounds was investigated against HepG2, HCT-116, MCF-7, HeP-2 and HeLa cancer cell lines. The obtained data showed that compounds 3b and 10c are the most potent members toward HepG2, HCT-116, MCF-7 and HeLa cells. Moreover, compounds 3a, 3b, 6g, 8a and 10c were assessed for their <i>in vitro</i> VEGFR-2 inhibitory activity. Results proved that compound 10c exhibited outstanding VEGFR-2 inhibition (IC<sub>50</sub> = 0.104 μM) compared to sunitinib. Compound 10c paused the G0-G1 phase of the cell cycle in HCT-116 and MCF-7 cells and the S phase in HeLa cells. Additionally, compound 10c elevated caspase-3/9 levels in HCT-116 and HeLa cells, leading to cancer cell death <i>via</i> apoptosis. Furthermore, compound 10c showed a significant reduction in tumor volume in Swiss albino female mice as an <i>in vivo</i> breast cancer model. Docking results confirmed the tight binding interactions of compound 10c with the VEGFR-2 binding site, with its binding energy surpassing that of sunitinib. <i>In silico</i> PK studies predicted compound 10c to have good oral bioavailability and a good drug score with low human toxicity risks.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d4md00754a","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Novel thiazole analogs 3a, 3b, 4, 5, 6a-g, 8a, 8b, 9a-c, 10a-d and 11 were designed and synthesized as molecular mimetics of sunitinib. In vitro antitumor activity of the obtained compounds was investigated against HepG2, HCT-116, MCF-7, HeP-2 and HeLa cancer cell lines. The obtained data showed that compounds 3b and 10c are the most potent members toward HepG2, HCT-116, MCF-7 and HeLa cells. Moreover, compounds 3a, 3b, 6g, 8a and 10c were assessed for their in vitro VEGFR-2 inhibitory activity. Results proved that compound 10c exhibited outstanding VEGFR-2 inhibition (IC50 = 0.104 μM) compared to sunitinib. Compound 10c paused the G0-G1 phase of the cell cycle in HCT-116 and MCF-7 cells and the S phase in HeLa cells. Additionally, compound 10c elevated caspase-3/9 levels in HCT-116 and HeLa cells, leading to cancer cell death via apoptosis. Furthermore, compound 10c showed a significant reduction in tumor volume in Swiss albino female mice as an in vivo breast cancer model. Docking results confirmed the tight binding interactions of compound 10c with the VEGFR-2 binding site, with its binding energy surpassing that of sunitinib. In silico PK studies predicted compound 10c to have good oral bioavailability and a good drug score with low human toxicity risks.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.40%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信