Transcriptome analysis of wild soybean (Glycine soja) under salt stress and identification of salt-responsive genes.

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Genes & genomics Pub Date : 2025-03-01 Epub Date: 2025-01-23 DOI:10.1007/s13258-024-01599-3
Man Bo Lee, Taekyeom Kim, Dae Yeon Kim, Su Kyoung Lee, Jae Yoon Kim
{"title":"Transcriptome analysis of wild soybean (Glycine soja) under salt stress and identification of salt-responsive genes.","authors":"Man Bo Lee, Taekyeom Kim, Dae Yeon Kim, Su Kyoung Lee, Jae Yoon Kim","doi":"10.1007/s13258-024-01599-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Soil salinity has been a serious threat to agricultural production worldwide, including soybeans. Glycine soja, the wild ancestor of cultivated soybeans, harbors high genetic diversity and possesses attractive rare alleles.</p><p><strong>Objective: </strong>We conducted a transcriptome analysis of G. soja subjected to salt stress to profile the transcriptomes and identify salt-responsive genes.</p><p><strong>Methods: </strong>G. soja was subjected to salt stress at 0, 24, and 48 h. RNA was sequenced using the Illumina NovaSeq 6000 platform. Transcriptome sequencing was used to identify differentially expressed genes (DEGs) and differential alternative splicing genes (DASGs) and to analyze alterations in salt-responsive genes.</p><p><strong>Results: </strong>A total of 249 and 1890 DEGs were identified at 24 and 48 h under salt stress, respectively. Among the DEGs, 45 and 252 transcription factors, including bHLH, MYB, and WRKY, were identified at 24 and 48 h, respectively. Additionally, 602 and 1850 DASGs were identified at 24 and 48 h, respectively. For DASGs, significant GO term enrichments included 'mRNA processing', 'Chromatin organization', 'Nucleus', and 'Transcription cofactor activity' at 48 h. The KEGG pathways, 'Spliceosome' and the 'mRNA surveillance pathway', were significantly enriched in DASGs at 48 h. Salt-responsive genes were identified in DEGs and/or DASGs, specifically GsJ3, GsACA12, GsACA13, GsHSFA2-like, and GsHSF30-like.</p><p><strong>Conclusion: </strong>Through the analysis of DEGs, DASGs, and transcription factor predictions, we identified key factors involved in the salt stress response and tolerance of G. soja, which could contribute to salt-tolerant soybean cultivar through genetic engineering strategies.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":"351-365"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01599-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Soil salinity has been a serious threat to agricultural production worldwide, including soybeans. Glycine soja, the wild ancestor of cultivated soybeans, harbors high genetic diversity and possesses attractive rare alleles.

Objective: We conducted a transcriptome analysis of G. soja subjected to salt stress to profile the transcriptomes and identify salt-responsive genes.

Methods: G. soja was subjected to salt stress at 0, 24, and 48 h. RNA was sequenced using the Illumina NovaSeq 6000 platform. Transcriptome sequencing was used to identify differentially expressed genes (DEGs) and differential alternative splicing genes (DASGs) and to analyze alterations in salt-responsive genes.

Results: A total of 249 and 1890 DEGs were identified at 24 and 48 h under salt stress, respectively. Among the DEGs, 45 and 252 transcription factors, including bHLH, MYB, and WRKY, were identified at 24 and 48 h, respectively. Additionally, 602 and 1850 DASGs were identified at 24 and 48 h, respectively. For DASGs, significant GO term enrichments included 'mRNA processing', 'Chromatin organization', 'Nucleus', and 'Transcription cofactor activity' at 48 h. The KEGG pathways, 'Spliceosome' and the 'mRNA surveillance pathway', were significantly enriched in DASGs at 48 h. Salt-responsive genes were identified in DEGs and/or DASGs, specifically GsJ3, GsACA12, GsACA13, GsHSFA2-like, and GsHSF30-like.

Conclusion: Through the analysis of DEGs, DASGs, and transcription factor predictions, we identified key factors involved in the salt stress response and tolerance of G. soja, which could contribute to salt-tolerant soybean cultivar through genetic engineering strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes & genomics
Genes & genomics 生物-生化与分子生物学
CiteScore
3.70
自引率
4.80%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信