{"title":"Comprehensive assessment of the significance of cellular senescence-associated genes in neuroblastoma.","authors":"Yahui Han, Biyun Li, Xiaokun Yu, Jianing Liu, Menghui Zhang, Wei Zhao, Da Zhang, Jiao Zhang","doi":"10.1007/s13258-025-01619-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The clinical course of high-risk neuroblastoma patients remains suboptimal, and the dynamic and reversible nature of cellular senescence provides an opportunity to develop new therapies.</p><p><strong>Objective: </strong>This study aims to identify unique markers of cellular senescence in neuroblastoma and to explore their clinical significance.</p><p><strong>Methods: </strong>The impact of multiple genetic regulatory mechanisms on cellular senescence-associated genes (CSAGs) was first assessed. We identified cellular senescence-associated subtypes by hierarchical clustering and explored the intrinsic differences between subtypes. We screened key CSAGs based on PPI networks and clinical significance. Subsequently, we constructed the cellular senescence-related risk score (CSRS) by LASSO regression and stepwise Cox regression, and validated its performance and stability through multiple methods. Finally, we performed single-cell analysis and constructed the nomogram.</p><p><strong>Results: </strong>The expression of CSAGs was influenced by copy number variation and DNA methylation. We found that significant differences between cellular senescence-associated subtypes in immune infiltration and overall prognosis. AURKA, CDK4, TERT were key genes in the cellular senescence process. CSRS showed superior and robust predictive performance in several cohorts and could serve as an independent prognostic factor in neuroblastoma. The senescence signature was also meaningful at the single-cell level and the nomogram was shown to have high accuracy and high clinical benefit.</p><p><strong>Conclusions: </strong>We comprehensively evaluated the significance of cellular senescence in neuroblastoma and concluded that it was significantly associated with immune characteristics and overall prognosis. Based on the expression levels of CSAGs, we developed the CSRS, which was a reliable tool to contribute to prognostic assessment and clinical decision making.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-025-01619-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The clinical course of high-risk neuroblastoma patients remains suboptimal, and the dynamic and reversible nature of cellular senescence provides an opportunity to develop new therapies.
Objective: This study aims to identify unique markers of cellular senescence in neuroblastoma and to explore their clinical significance.
Methods: The impact of multiple genetic regulatory mechanisms on cellular senescence-associated genes (CSAGs) was first assessed. We identified cellular senescence-associated subtypes by hierarchical clustering and explored the intrinsic differences between subtypes. We screened key CSAGs based on PPI networks and clinical significance. Subsequently, we constructed the cellular senescence-related risk score (CSRS) by LASSO regression and stepwise Cox regression, and validated its performance and stability through multiple methods. Finally, we performed single-cell analysis and constructed the nomogram.
Results: The expression of CSAGs was influenced by copy number variation and DNA methylation. We found that significant differences between cellular senescence-associated subtypes in immune infiltration and overall prognosis. AURKA, CDK4, TERT were key genes in the cellular senescence process. CSRS showed superior and robust predictive performance in several cohorts and could serve as an independent prognostic factor in neuroblastoma. The senescence signature was also meaningful at the single-cell level and the nomogram was shown to have high accuracy and high clinical benefit.
Conclusions: We comprehensively evaluated the significance of cellular senescence in neuroblastoma and concluded that it was significantly associated with immune characteristics and overall prognosis. Based on the expression levels of CSAGs, we developed the CSRS, which was a reliable tool to contribute to prognostic assessment and clinical decision making.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.