NEIL1: the second DNA glycosylase involved in action-at-a-distance mutations induced by 8-oxo-7,8-dihydroguanine.

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yoshihiro Fujikawa, Tetsuya Suzuki, Hidehiko Kawai, Hiroyuki Kamiya
{"title":"NEIL1: the second DNA glycosylase involved in action-at-a-distance mutations induced by 8-oxo-7,8-dihydroguanine.","authors":"Yoshihiro Fujikawa, Tetsuya Suzuki, Hidehiko Kawai, Hiroyuki Kamiya","doi":"10.1016/j.freeradbiomed.2025.01.041","DOIUrl":null,"url":null,"abstract":"<p><p>8-Oxo-7,8-dihydroguanine (G<sup>O</sup>, 8-hydroxyguanine), an oxidatively damaged base, induces mutations and is involved in cancer initiation. In addition to G:C→T:A transversions at the damaged site, it causes untargeted base substitution (action-at-a-distance) mutations at the G bases of 5'-GpA-3' sites in human cells. Paradoxically, OGG1, a DNA glycosylase involved in the base excision repair (BER) pathway, enhances the action-at-a-distance mutations by G<sup>O</sup>. In this study, other DNA glycosylases, potential repair enzymes for the G<sup>O</sup> base, were knocked down, and their effects on the untargeted mutations were examined using the supF reporter gene. The knockdown of NEIL1 decreased such mutations, while those of NTH1, NEIL2, and NEIL3 had no effects. The double knockdown of OGG1 and NEIL1 additively affected the mutation frequency. These results indicated that NEIL1 is another BER protein involved in the action-at-a-distance mutations triggered by the oxidized guanine base.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.01.041","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

8-Oxo-7,8-dihydroguanine (GO, 8-hydroxyguanine), an oxidatively damaged base, induces mutations and is involved in cancer initiation. In addition to G:C→T:A transversions at the damaged site, it causes untargeted base substitution (action-at-a-distance) mutations at the G bases of 5'-GpA-3' sites in human cells. Paradoxically, OGG1, a DNA glycosylase involved in the base excision repair (BER) pathway, enhances the action-at-a-distance mutations by GO. In this study, other DNA glycosylases, potential repair enzymes for the GO base, were knocked down, and their effects on the untargeted mutations were examined using the supF reporter gene. The knockdown of NEIL1 decreased such mutations, while those of NTH1, NEIL2, and NEIL3 had no effects. The double knockdown of OGG1 and NEIL1 additively affected the mutation frequency. These results indicated that NEIL1 is another BER protein involved in the action-at-a-distance mutations triggered by the oxidized guanine base.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信