{"title":"NEIL1: the second DNA glycosylase involved in action-at-a-distance mutations induced by 8-oxo-7,8-dihydroguanine.","authors":"Yoshihiro Fujikawa, Tetsuya Suzuki, Hidehiko Kawai, Hiroyuki Kamiya","doi":"10.1016/j.freeradbiomed.2025.01.041","DOIUrl":null,"url":null,"abstract":"<p><p>8-Oxo-7,8-dihydroguanine (G<sup>O</sup>, 8-hydroxyguanine), an oxidatively damaged base, induces mutations and is involved in cancer initiation. In addition to G:C→T:A transversions at the damaged site, it causes untargeted base substitution (action-at-a-distance) mutations at the G bases of 5'-GpA-3' sites in human cells. Paradoxically, OGG1, a DNA glycosylase involved in the base excision repair (BER) pathway, enhances the action-at-a-distance mutations by G<sup>O</sup>. In this study, other DNA glycosylases, potential repair enzymes for the G<sup>O</sup> base, were knocked down, and their effects on the untargeted mutations were examined using the supF reporter gene. The knockdown of NEIL1 decreased such mutations, while those of NTH1, NEIL2, and NEIL3 had no effects. The double knockdown of OGG1 and NEIL1 additively affected the mutation frequency. These results indicated that NEIL1 is another BER protein involved in the action-at-a-distance mutations triggered by the oxidized guanine base.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.01.041","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
8-Oxo-7,8-dihydroguanine (GO, 8-hydroxyguanine), an oxidatively damaged base, induces mutations and is involved in cancer initiation. In addition to G:C→T:A transversions at the damaged site, it causes untargeted base substitution (action-at-a-distance) mutations at the G bases of 5'-GpA-3' sites in human cells. Paradoxically, OGG1, a DNA glycosylase involved in the base excision repair (BER) pathway, enhances the action-at-a-distance mutations by GO. In this study, other DNA glycosylases, potential repair enzymes for the GO base, were knocked down, and their effects on the untargeted mutations were examined using the supF reporter gene. The knockdown of NEIL1 decreased such mutations, while those of NTH1, NEIL2, and NEIL3 had no effects. The double knockdown of OGG1 and NEIL1 additively affected the mutation frequency. These results indicated that NEIL1 is another BER protein involved in the action-at-a-distance mutations triggered by the oxidized guanine base.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.