Using feedback in pooled experiments augmented with imputation for high genotyping accuracy at reduced cost.

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY
Camille Clouard, Carl Nettelblad
{"title":"Using feedback in pooled experiments augmented with imputation for high genotyping accuracy at reduced cost.","authors":"Camille Clouard, Carl Nettelblad","doi":"10.1093/g3journal/jkaf010","DOIUrl":null,"url":null,"abstract":"<p><p>Conducting genomic selection in plant breeding programs can substantially speed up the development of new varieties. Genomic selection provides more reliable insights when it is based on dense marker data, in which the rare variants can be particularly informative. Despite the availability of new technologies, the cost of large-scale genotyping remains a major limitation to the implementation of genomic selection. We suggest to combine pooled genotyping with population-based imputation as a cost-effective computational strategy for genotyping SNPs. Pooling saves genotyping tests and has proven to accurately capture the rare variants that are usually missed by imputation. In this study, we investigate adding iterative coupling to a joint model of pooling and imputation that we have previously proposed. In each iteration, the imputed genotype probabilities serve as feedback input for adjusting the per-sample prior genotype probabilities, before running a new imputation based on these adjusted data. This flexible setup indirectly imposes consistency between the imputed genotypes and the pooled observations. We demonstrate that repeated cycles of feedback can take advantage of the strengths in both pooling and imputation when an appropriate set of reference haplotypes is available for imputation. The iterations improve greatly upon the initial genotype predictions, achieving very high genotype accuracy for both low and high frequency variants. We enhance the average concordance from 94.5% to 98.4% at limited computational cost and without requiring any additional genotype testing.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkaf010","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Conducting genomic selection in plant breeding programs can substantially speed up the development of new varieties. Genomic selection provides more reliable insights when it is based on dense marker data, in which the rare variants can be particularly informative. Despite the availability of new technologies, the cost of large-scale genotyping remains a major limitation to the implementation of genomic selection. We suggest to combine pooled genotyping with population-based imputation as a cost-effective computational strategy for genotyping SNPs. Pooling saves genotyping tests and has proven to accurately capture the rare variants that are usually missed by imputation. In this study, we investigate adding iterative coupling to a joint model of pooling and imputation that we have previously proposed. In each iteration, the imputed genotype probabilities serve as feedback input for adjusting the per-sample prior genotype probabilities, before running a new imputation based on these adjusted data. This flexible setup indirectly imposes consistency between the imputed genotypes and the pooled observations. We demonstrate that repeated cycles of feedback can take advantage of the strengths in both pooling and imputation when an appropriate set of reference haplotypes is available for imputation. The iterations improve greatly upon the initial genotype predictions, achieving very high genotype accuracy for both low and high frequency variants. We enhance the average concordance from 94.5% to 98.4% at limited computational cost and without requiring any additional genotype testing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信