Automated post-run analysis of arrayed quantitative PCR amplification curves using machine learning.

Gates Open Research Pub Date : 2025-01-20 eCollection Date: 2025-01-01 DOI:10.12688/gatesopenres.16313.1
Ben J Brintz, Darwin J Operario, David Garrett Brown, Shanrui Wu, Lan Wang, Eric R Houpt, Daniel T Leung, Jie Liu, James A Platts-Mills
{"title":"Automated post-run analysis of arrayed quantitative PCR amplification curves using machine learning.","authors":"Ben J Brintz, Darwin J Operario, David Garrett Brown, Shanrui Wu, Lan Wang, Eric R Houpt, Daniel T Leung, Jie Liu, James A Platts-Mills","doi":"10.12688/gatesopenres.16313.1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The TaqMan Array Card (TAC) is an arrayed, high-throughput qPCR platform that can simultaneously detect multiple targets in a single reaction. However, the manual post-run analysis of TAC data is time consuming and subject to interpretation. We sought to automate the post-run analysis of TAC data using machine learning models.</p><p><strong>Methods: </strong>We used 165,214 qPCR amplification curves from two studies to train and test two eXtreme Gradient Boosting (XGBoost) models. Previous manual analyses of the amplification curves by experts in qPCR analysis were used as the gold standard. First, a classification model predicted whether amplification occurred or not, and if so, a second model predicted the cycle threshold (Ct) value. We used 5-fold cross-validation to tune the models and assessed performance using accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and mean absolute error (MAE). For external validation, we used 1,472 reactions previously analyzed by 17 laboratory scientists as part of an external quality assessment for a multisite study.</p><p><strong>Results: </strong>In internal validation, the classification model achieved an accuracy of 0.996, sensitivity of 0.997, specificity of 0.993, PPV of 0.998, and NPV of 0.991. The Ct prediction model achieved a MAE of 0.590. In external validation, the automated analysis achieved an accuracy of 0.997 and a MAE of 0.611, and the automated analysis was more accurate than manual analyses by 14 of the 17 laboratory scientists.</p><p><strong>Conclusions: </strong>We automated the post-run analysis of highly-arrayed qPCR data using machine learning models with high accuracy in comparison to a manual gold standard. This approach has the potential to save time and improve reproducibility in laboratories using the TAC platform and other high-throughput qPCR approaches.</p>","PeriodicalId":12593,"journal":{"name":"Gates Open Research","volume":"9 ","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756513/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gates Open Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/gatesopenres.16313.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The TaqMan Array Card (TAC) is an arrayed, high-throughput qPCR platform that can simultaneously detect multiple targets in a single reaction. However, the manual post-run analysis of TAC data is time consuming and subject to interpretation. We sought to automate the post-run analysis of TAC data using machine learning models.

Methods: We used 165,214 qPCR amplification curves from two studies to train and test two eXtreme Gradient Boosting (XGBoost) models. Previous manual analyses of the amplification curves by experts in qPCR analysis were used as the gold standard. First, a classification model predicted whether amplification occurred or not, and if so, a second model predicted the cycle threshold (Ct) value. We used 5-fold cross-validation to tune the models and assessed performance using accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and mean absolute error (MAE). For external validation, we used 1,472 reactions previously analyzed by 17 laboratory scientists as part of an external quality assessment for a multisite study.

Results: In internal validation, the classification model achieved an accuracy of 0.996, sensitivity of 0.997, specificity of 0.993, PPV of 0.998, and NPV of 0.991. The Ct prediction model achieved a MAE of 0.590. In external validation, the automated analysis achieved an accuracy of 0.997 and a MAE of 0.611, and the automated analysis was more accurate than manual analyses by 14 of the 17 laboratory scientists.

Conclusions: We automated the post-run analysis of highly-arrayed qPCR data using machine learning models with high accuracy in comparison to a manual gold standard. This approach has the potential to save time and improve reproducibility in laboratories using the TAC platform and other high-throughput qPCR approaches.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gates Open Research
Gates Open Research Immunology and Microbiology-Immunology and Microbiology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
90
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信