Wastewater Monitoring During the COVID-19 Pandemic in the Veneto Region, Italy: Longitudinal Observational Study.

IF 3.5 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Honoria Ocagli, Marco Zambito, Filippo Da Re, Vanessa Groppi, Marco Zampini, Alessia Terrini, Franco Rigoli, Irene Amoruso, Tatjana Baldovin, Vincenzo Baldo, Francesca Russo, Dario Gregori
{"title":"Wastewater Monitoring During the COVID-19 Pandemic in the Veneto Region, Italy: Longitudinal Observational Study.","authors":"Honoria Ocagli, Marco Zambito, Filippo Da Re, Vanessa Groppi, Marco Zampini, Alessia Terrini, Franco Rigoli, Irene Amoruso, Tatjana Baldovin, Vincenzo Baldo, Francesca Russo, Dario Gregori","doi":"10.2196/58862","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As the COVID-19 pandemic has affected populations around the world, there has been substantial interest in wastewater-based epidemiology (WBE) as a tool to monitor the spread of SARS-CoV-2. This study investigates the use of WBE to anticipate COVID-19 trends by analyzing the correlation between viral RNA concentrations in wastewater and reported COVID-19 cases in the Veneto region of Italy.</p><p><strong>Objective: </strong>We aimed to evaluate the effectiveness of the cumulative sum (CUSUM) control chart method in detecting changes in SARS-CoV-2 concentrations in wastewater and its potential as an early warning system for COVID-19 outbreaks. Additionally, we aimed to validate these findings over different time periods to ensure robustness.</p><p><strong>Methods: </strong>This study analyzed the temporal correlation between SARS-CoV-2 RNA concentrations in wastewater and COVID-19 clinical outcomes, including confirmed cases, hospitalizations, and intensive care unit (ICU) admissions, from October 2021 to August 2022 in the Veneto region, Italy. Wastewater samples were collected weekly from 10 wastewater treatment plants and analyzed using a reverse transcription-quantitative polymerase chain reaction. The CUSUM method was used to detect significant shifts in the data, with an initial analysis conducted from October 2021 to February 2022, followed by validation in a second period from February 2022 to August 2022.</p><p><strong>Results: </strong>The study found that peaks in SARS-CoV-2 RNA concentrations in wastewater consistently preceded peaks in reported COVID-19 cases by 5.2 days. Hospitalizations followed with a delay of 4.25 days, while ICU admissions exhibited a lead time of approximately 6 days. Notably, certain health care districts exhibited stronger correlations, with notable values in wastewater anticipating ICU admissions by an average of 13.5 and 9.5 days in 2 specific districts. The CUSUM charts effectively identified early changes in viral load, indicating potential outbreaks before clinical cases increased. Validation during the second period confirmed the consistency of these findings, reinforcing the robustness of the CUSUM method in this context.</p><p><strong>Conclusions: </strong>WBE, combined with the CUSUM method, offers valuable insight into the level of COVID-19 outbreaks in a community, including asymptomatic cases, thus acting as a precious early warning tool for infectious disease outbreaks with pandemic potential.</p>","PeriodicalId":14765,"journal":{"name":"JMIR Public Health and Surveillance","volume":"11 ","pages":"e58862"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750127/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Public Health and Surveillance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/58862","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Background: As the COVID-19 pandemic has affected populations around the world, there has been substantial interest in wastewater-based epidemiology (WBE) as a tool to monitor the spread of SARS-CoV-2. This study investigates the use of WBE to anticipate COVID-19 trends by analyzing the correlation between viral RNA concentrations in wastewater and reported COVID-19 cases in the Veneto region of Italy.

Objective: We aimed to evaluate the effectiveness of the cumulative sum (CUSUM) control chart method in detecting changes in SARS-CoV-2 concentrations in wastewater and its potential as an early warning system for COVID-19 outbreaks. Additionally, we aimed to validate these findings over different time periods to ensure robustness.

Methods: This study analyzed the temporal correlation between SARS-CoV-2 RNA concentrations in wastewater and COVID-19 clinical outcomes, including confirmed cases, hospitalizations, and intensive care unit (ICU) admissions, from October 2021 to August 2022 in the Veneto region, Italy. Wastewater samples were collected weekly from 10 wastewater treatment plants and analyzed using a reverse transcription-quantitative polymerase chain reaction. The CUSUM method was used to detect significant shifts in the data, with an initial analysis conducted from October 2021 to February 2022, followed by validation in a second period from February 2022 to August 2022.

Results: The study found that peaks in SARS-CoV-2 RNA concentrations in wastewater consistently preceded peaks in reported COVID-19 cases by 5.2 days. Hospitalizations followed with a delay of 4.25 days, while ICU admissions exhibited a lead time of approximately 6 days. Notably, certain health care districts exhibited stronger correlations, with notable values in wastewater anticipating ICU admissions by an average of 13.5 and 9.5 days in 2 specific districts. The CUSUM charts effectively identified early changes in viral load, indicating potential outbreaks before clinical cases increased. Validation during the second period confirmed the consistency of these findings, reinforcing the robustness of the CUSUM method in this context.

Conclusions: WBE, combined with the CUSUM method, offers valuable insight into the level of COVID-19 outbreaks in a community, including asymptomatic cases, thus acting as a precious early warning tool for infectious disease outbreaks with pandemic potential.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.70
自引率
2.40%
发文量
136
审稿时长
12 weeks
期刊介绍: JMIR Public Health & Surveillance (JPHS) is a renowned scholarly journal indexed on PubMed. It follows a rigorous peer-review process and covers a wide range of disciplines. The journal distinguishes itself by its unique focus on the intersection of technology and innovation in the field of public health. JPHS delves into diverse topics such as public health informatics, surveillance systems, rapid reports, participatory epidemiology, infodemiology, infoveillance, digital disease detection, digital epidemiology, electronic public health interventions, mass media and social media campaigns, health communication, and emerging population health analysis systems and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信