Min Su Yoon , Byunghyun Bae , Kunhee Kim , Hahnbeom Park , Minkyung Baek
{"title":"Deep learning methods for proteome-scale interaction prediction","authors":"Min Su Yoon , Byunghyun Bae , Kunhee Kim , Hahnbeom Park , Minkyung Baek","doi":"10.1016/j.sbi.2024.102981","DOIUrl":null,"url":null,"abstract":"<div><div>Proteome-scale interaction prediction is essential for understanding protein functions and disease mechanisms. Traditional experimental methods are often limited by scale and complexity, driving the need for computational approaches. Deep learning has emerged as a powerful tool, enabling high-throughput, accurate predictions of protein interactions. This review highlights recent advances in deep learning methods for protein–protein and protein-ligand interaction screening, along with datasets used for model training. Despite the progress with deep learning, challenges such as data quality and validation biases remain. We also discuss the increasing importance of integrating structural information to enhance prediction accuracy and how structure-based deep learning approaches can help overcome current limitations, ultimately advancing biological research and drug discovery.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"90 ","pages":"Article 102981"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24002082","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proteome-scale interaction prediction is essential for understanding protein functions and disease mechanisms. Traditional experimental methods are often limited by scale and complexity, driving the need for computational approaches. Deep learning has emerged as a powerful tool, enabling high-throughput, accurate predictions of protein interactions. This review highlights recent advances in deep learning methods for protein–protein and protein-ligand interaction screening, along with datasets used for model training. Despite the progress with deep learning, challenges such as data quality and validation biases remain. We also discuss the increasing importance of integrating structural information to enhance prediction accuracy and how structure-based deep learning approaches can help overcome current limitations, ultimately advancing biological research and drug discovery.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation