Structure-based identification of HNF4α agonists: Rosmarinic acid as a promising candidate for NAFLD treatment

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xi Chen , Xinqi Zhu , Gang Wu , Xiaobo Wang , Yu Zhang , Nan Jiang
{"title":"Structure-based identification of HNF4α agonists: Rosmarinic acid as a promising candidate for NAFLD treatment","authors":"Xi Chen ,&nbsp;Xinqi Zhu ,&nbsp;Gang Wu ,&nbsp;Xiaobo Wang ,&nbsp;Yu Zhang ,&nbsp;Nan Jiang","doi":"10.1016/j.csbj.2024.12.014","DOIUrl":null,"url":null,"abstract":"<div><div>The prevention and treatment of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), have emerged as critical global health challenges. Current lipid-lowering pharmacotherapies are associated with side effects, including hepatotoxicity, rhabdomyolysis, and decreased erythrocyte counts, underscoring the urgent need for safer therapeutic alternatives. Hepatocyte nuclear factor 4α (HNF4α) has been identified as a pivotal regulator of lipid metabolism, making it an attractive target for drug development. In this study, we investigated the structural characteristics and binding interactions of four HNF4α agonists: Alverine, Benfluorex, N-trans caffeoyltyramine (NCT), and N-trans feruloyltyramine (NFT). Our results indicate that the conjugated structure formed by the amide bond and the aromatic ring in NCT and NFT enhances electron density, potentially contributing to their increased specificity for HNF4α relative to Alverine and Benfluorex. Additionally, electrostatic interactions between the aromatic moieties of the compounds and HNF4α residues were found to play a crucial role in ligand binding. Leveraging these insights, we performed a high-throughput virtual screening of 2131 natural compounds, using the binding modes of NCT and NFT as reference templates. Rosmarinic acid emerged as a promising HNF4α agonist, exhibiting a high consensus score and favorable binding affinity. Subsequent biological assays demonstrated that rosmarinic acid significantly inhibited HepG2 cell proliferation which related to the enhancement of autophagy. After the knockdown of P2 isoform of HNF4α, HepG2 was more sensitive to the administration of NCT and rosmarinic acid. Furthermore, the proliferation of DLD-1 cell, which only expresses the P2 isoform of HNF4α, was not significantly inhibited by the administration of NCT and rosmarinic acid. Collectively, these findings suggest that rosmarinic acid is a promising HNF4α agonist which is more effective to activate the P1 isoform of HNF4α and holds potential as an effective treatment for NAFLD, providing a foundation for the development of novel lipid-lowering drugs with enhanced efficacy and reduced side effect.</div></div><div><h3>Data Availability</h3><div>Data will be made available on request.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 171-183"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755020/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024004367","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The prevention and treatment of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), have emerged as critical global health challenges. Current lipid-lowering pharmacotherapies are associated with side effects, including hepatotoxicity, rhabdomyolysis, and decreased erythrocyte counts, underscoring the urgent need for safer therapeutic alternatives. Hepatocyte nuclear factor 4α (HNF4α) has been identified as a pivotal regulator of lipid metabolism, making it an attractive target for drug development. In this study, we investigated the structural characteristics and binding interactions of four HNF4α agonists: Alverine, Benfluorex, N-trans caffeoyltyramine (NCT), and N-trans feruloyltyramine (NFT). Our results indicate that the conjugated structure formed by the amide bond and the aromatic ring in NCT and NFT enhances electron density, potentially contributing to their increased specificity for HNF4α relative to Alverine and Benfluorex. Additionally, electrostatic interactions between the aromatic moieties of the compounds and HNF4α residues were found to play a crucial role in ligand binding. Leveraging these insights, we performed a high-throughput virtual screening of 2131 natural compounds, using the binding modes of NCT and NFT as reference templates. Rosmarinic acid emerged as a promising HNF4α agonist, exhibiting a high consensus score and favorable binding affinity. Subsequent biological assays demonstrated that rosmarinic acid significantly inhibited HepG2 cell proliferation which related to the enhancement of autophagy. After the knockdown of P2 isoform of HNF4α, HepG2 was more sensitive to the administration of NCT and rosmarinic acid. Furthermore, the proliferation of DLD-1 cell, which only expresses the P2 isoform of HNF4α, was not significantly inhibited by the administration of NCT and rosmarinic acid. Collectively, these findings suggest that rosmarinic acid is a promising HNF4α agonist which is more effective to activate the P1 isoform of HNF4α and holds potential as an effective treatment for NAFLD, providing a foundation for the development of novel lipid-lowering drugs with enhanced efficacy and reduced side effect.

Data Availability

Data will be made available on request.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信