Hang Zhang, Fan Yang, Ying Xu, Shen Zhao, Yi-Zhou Jiang, Zhi-Ming Shao, Yi Xiao
{"title":"Multimodal integration using a machine learning approach facilitates risk stratification in HR+/HER2- breast cancer.","authors":"Hang Zhang, Fan Yang, Ying Xu, Shen Zhao, Yi-Zhou Jiang, Zhi-Ming Shao, Yi Xiao","doi":"10.1016/j.xcrm.2024.101924","DOIUrl":null,"url":null,"abstract":"<p><p>Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most common type of breast cancer, with continuous recurrence remaining an important clinical issue. Current relapse predictive models in HR+/HER2- breast cancer patients still have limitations. The integration of multidimensional data represents a promising alternative for predicting relapse. In this study, we leverage our multi-omics cohort comprising 579 HR+/HER2- breast cancer patients (200 patients with complete data across 7 modalities) and develop a machine-learning-based model, namely CIMPTGV, which integrates clinical information, immunohistochemistry, metabolomics, pathomics, transcriptomics, genomics, and copy number variations to predict recurrence risk of HR+/HER2- breast cancer. This model achieves concordance indices (C-indices) of 0.871 and 0.869 in the train and test sets, respectively. The risk population predicted by the CIMPTGV model encompasses those identified by single-modality models. Feature analysis reveals that synergistic and complementary effects exist in different modalities. Simultaneously, we develop a simplified model with a mean area under the curve (AUC) of 0.840, presenting a useful approach for clinical applications.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101924"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101924","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most common type of breast cancer, with continuous recurrence remaining an important clinical issue. Current relapse predictive models in HR+/HER2- breast cancer patients still have limitations. The integration of multidimensional data represents a promising alternative for predicting relapse. In this study, we leverage our multi-omics cohort comprising 579 HR+/HER2- breast cancer patients (200 patients with complete data across 7 modalities) and develop a machine-learning-based model, namely CIMPTGV, which integrates clinical information, immunohistochemistry, metabolomics, pathomics, transcriptomics, genomics, and copy number variations to predict recurrence risk of HR+/HER2- breast cancer. This model achieves concordance indices (C-indices) of 0.871 and 0.869 in the train and test sets, respectively. The risk population predicted by the CIMPTGV model encompasses those identified by single-modality models. Feature analysis reveals that synergistic and complementary effects exist in different modalities. Simultaneously, we develop a simplified model with a mean area under the curve (AUC) of 0.840, presenting a useful approach for clinical applications.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.