Elevating performance and interpretability of in silico classifiers for drug proarrhythmia risk evaluations using multi-biomarker approach with ranking algorithm

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ali Ikhsanul Qauli , Nurul Qashri Mahardika T , Ulfa Latifa Hanum , Frederique Jos Vanheusden , Ki Moo Lim
{"title":"Elevating performance and interpretability of in silico classifiers for drug proarrhythmia risk evaluations using multi-biomarker approach with ranking algorithm","authors":"Ali Ikhsanul Qauli ,&nbsp;Nurul Qashri Mahardika T ,&nbsp;Ulfa Latifa Hanum ,&nbsp;Frederique Jos Vanheusden ,&nbsp;Ki Moo Lim","doi":"10.1016/j.cmpb.2025.108609","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective</h3><div>Using electrophysiological simulations and machine learning to predict drug proarrhythmia risk has gained popularity due to its effectiveness. The leading <em>in silico</em> drug assessment system mainly uses a single biomarker (qNet) to predict proarrhythmia risk, offering good performance and straightforward interpretation. Other advanced classifiers incorporating additional physiological biomarkers provide better predictive capabilities but are less intuitive. Thus, a method that accommodates multiple biomarkers while maintaining interpretability is needed.</div></div><div><h3>Methods</h3><div>We enhance the current best ordinal logistic regression (OLR) model by adding more physiological biomarkers to overcome its limitations. We also introduce a general torsade metric score (TMS) for multi-biomarker approaches to facilitate easier interpretation. Additionally, a novel ranking algorithm based on a simple multi-criteria decision analysis method is employed to evaluate various classifiers against standard proarrhythmia risk criteria efficiently.</div></div><div><h3>Results</h3><div>Our proposed method demonstrates that using multiple well-known biomarkers yields better performance than using qNet alone. Some accepted multi-biomarker OLR models do not incorporate qNet yet outperform those that do. Moreover, some ill-performing biomarkers when utilized individually can show improved performance in combination with other biomarkers.</div></div><div><h3>Conclusion</h3><div>The proposed approach offers an effective way of utilizing multiple biomarkers, including well-known ones, providing practical alternatives for proarrhythmia risk assessment. The interpretability of the accepted models is straightforward, thanks to the TMS thresholds for multi-biomarker OLR models that allow direct evaluation of the classification prediction of individual drugs.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"261 ","pages":"Article 108609"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725000264","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective

Using electrophysiological simulations and machine learning to predict drug proarrhythmia risk has gained popularity due to its effectiveness. The leading in silico drug assessment system mainly uses a single biomarker (qNet) to predict proarrhythmia risk, offering good performance and straightforward interpretation. Other advanced classifiers incorporating additional physiological biomarkers provide better predictive capabilities but are less intuitive. Thus, a method that accommodates multiple biomarkers while maintaining interpretability is needed.

Methods

We enhance the current best ordinal logistic regression (OLR) model by adding more physiological biomarkers to overcome its limitations. We also introduce a general torsade metric score (TMS) for multi-biomarker approaches to facilitate easier interpretation. Additionally, a novel ranking algorithm based on a simple multi-criteria decision analysis method is employed to evaluate various classifiers against standard proarrhythmia risk criteria efficiently.

Results

Our proposed method demonstrates that using multiple well-known biomarkers yields better performance than using qNet alone. Some accepted multi-biomarker OLR models do not incorporate qNet yet outperform those that do. Moreover, some ill-performing biomarkers when utilized individually can show improved performance in combination with other biomarkers.

Conclusion

The proposed approach offers an effective way of utilizing multiple biomarkers, including well-known ones, providing practical alternatives for proarrhythmia risk assessment. The interpretability of the accepted models is straightforward, thanks to the TMS thresholds for multi-biomarker OLR models that allow direct evaluation of the classification prediction of individual drugs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信