QM Investigation of Rare Earth Ion Interactions with First Hydration Shell Waters and Protein-Based Coordination Models.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Elizabeth E Wait, Christopher R Riley, Monica M Manginell, Amanda Peretti, Erik D Spoerke, George D Bachand, Susan B Rempe, Pengyu Ren
{"title":"QM Investigation of Rare Earth Ion Interactions with First Hydration Shell Waters and Protein-Based Coordination Models.","authors":"Elizabeth E Wait, Christopher R Riley, Monica M Manginell, Amanda Peretti, Erik D Spoerke, George D Bachand, Susan B Rempe, Pengyu Ren","doi":"10.1021/acs.jpcb.4c07361","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional methods for extracting rare earth metals (REMs) from mined mineral ores are inefficient, expensive, and environmentally damaging. Recent discovery of lanmodulin (LanM), a protein that coordinates REMs with high-affinity and selectivity over competing ions, provides inspiration for new REM refinement methods. Here, we used quantum mechanical (QM) methods to investigate trivalent lanthanide cation (Ln<sup>3+</sup>) interactions with coordination systems representing bulk solvent water and protein binding sites. Energy decomposition analysis (EDA) showed differences in the energetic components of Ln<sup>3+</sup> interaction with representatives of solvent (water, H<sub>2</sub>O) and protein binding sites (acetate, CH<sub>3</sub>COO<sup>-</sup>), highlighting the importance of accurate description of electrostatics and polarization in computational modeling of REM interactions with biological and bioinspired molecules. Relative binding free energies were obtained for Ln<sup>3+</sup> with coordination complexes originating from binding sites in PDB structures of a lanthanum binding peptide (PDB entry 7CCO) and LanM, with explicit consideration of the first hydration shell waters, according to quasi-chemical theory (QCT). Beyond the first shell, the bulk solvent environment was represented with an implicit continuum model. Ln<sup>3+</sup> interactions with (H<sub>2</sub>O)<sub>9</sub> and both binding site models became more favorable, moving down the periodic series. This trend was more pronounced with the protein binding site models than with water, resulting in affinity increasing with periodic number, except for the last REM, Lu<sup>3+</sup>, which bound less favorably than the preceding element, Yb<sup>3+</sup>. Using the truncated 7CCO binding site model, the magnitude and trend of the experimental Ln<sup>3+</sup> relative binding free energies for the whole 7CCO peptide were reproduced. Conversely, the previously reported experimental data for LanM show a preference for the earlier lanthanides; this is likely due to longer-range interactions and cooperative effects, which are not represented by the reduced models. Using the truncated 7CCO binding site model, the magnitude and trend of the experimental Ln<sup>3+</sup> relative binding free energies for the whole 7CCO peptide were reproduced. In contrast to the previously reported experimental data for LanM, the peptide preferentially binds the earlier lanthanides. This difference likely arises due to longer-range interactions and cooperative effects not represented by the peptide. Further investigation of Ln<sup>3+</sup> interactions with whole proteins using polarizable molecular mechanics models with explicit solvent is warranted to understand the influence of longer-ranged interactions, cooperativity, and bulk solvent. Nevertheless, the present work provides new insights into Ln<sup>3+</sup> interactions with biomolecules and presents an effective computational platform for designing specific single-site REM binding peptides more efficiently.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07361","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional methods for extracting rare earth metals (REMs) from mined mineral ores are inefficient, expensive, and environmentally damaging. Recent discovery of lanmodulin (LanM), a protein that coordinates REMs with high-affinity and selectivity over competing ions, provides inspiration for new REM refinement methods. Here, we used quantum mechanical (QM) methods to investigate trivalent lanthanide cation (Ln3+) interactions with coordination systems representing bulk solvent water and protein binding sites. Energy decomposition analysis (EDA) showed differences in the energetic components of Ln3+ interaction with representatives of solvent (water, H2O) and protein binding sites (acetate, CH3COO-), highlighting the importance of accurate description of electrostatics and polarization in computational modeling of REM interactions with biological and bioinspired molecules. Relative binding free energies were obtained for Ln3+ with coordination complexes originating from binding sites in PDB structures of a lanthanum binding peptide (PDB entry 7CCO) and LanM, with explicit consideration of the first hydration shell waters, according to quasi-chemical theory (QCT). Beyond the first shell, the bulk solvent environment was represented with an implicit continuum model. Ln3+ interactions with (H2O)9 and both binding site models became more favorable, moving down the periodic series. This trend was more pronounced with the protein binding site models than with water, resulting in affinity increasing with periodic number, except for the last REM, Lu3+, which bound less favorably than the preceding element, Yb3+. Using the truncated 7CCO binding site model, the magnitude and trend of the experimental Ln3+ relative binding free energies for the whole 7CCO peptide were reproduced. Conversely, the previously reported experimental data for LanM show a preference for the earlier lanthanides; this is likely due to longer-range interactions and cooperative effects, which are not represented by the reduced models. Using the truncated 7CCO binding site model, the magnitude and trend of the experimental Ln3+ relative binding free energies for the whole 7CCO peptide were reproduced. In contrast to the previously reported experimental data for LanM, the peptide preferentially binds the earlier lanthanides. This difference likely arises due to longer-range interactions and cooperative effects not represented by the peptide. Further investigation of Ln3+ interactions with whole proteins using polarizable molecular mechanics models with explicit solvent is warranted to understand the influence of longer-ranged interactions, cooperativity, and bulk solvent. Nevertheless, the present work provides new insights into Ln3+ interactions with biomolecules and presents an effective computational platform for designing specific single-site REM binding peptides more efficiently.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信