Melting Temperature Hidden Behind Liquid-Liquid Phase Transition in Glycerol.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Szymon Starzonek, Jakub Kalabiński, Aleksandra Drozd-Rzoska, Sylwester J Rzoska, Aleš Iglič
{"title":"Melting Temperature Hidden Behind Liquid-Liquid Phase Transition in Glycerol.","authors":"Szymon Starzonek, Jakub Kalabiński, Aleksandra Drozd-Rzoska, Sylwester J Rzoska, Aleš Iglič","doi":"10.1021/acs.jpcb.4c04552","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid-liquid phase transitions play a pivotal role in various scientific disciplines and technological applications, ranging from biology to materials science and geophysics. Understanding the behavior of materials undergoing these transitions provides valuable insights into complex systems and their dynamic properties. This review explores the implications of liquid-liquid phase transitions, particularly focusing on the transition between low-density liquid (LDL) and high-density liquid (HDL) phases. We investigate the thermodynamic, structural, and mechanistic aspects of these transitions, emphasizing their relevance in diverse fields. The creation of dynamic heterogeneities and critical fluctuations during liquid-liquid phase transitions is discussed, highlighting their role in shaping the phase behavior and dynamics of complex fluids. Experimental observations, including the use of dielectric spectroscopy and nonlinear methods, shed light on the intricate nature of these transitions. Our findings suggest a connection between liquid-liquid phase transitions and critical phenomena, with implications for understanding the supercooled state and phase behavior of hydrogen-bonded liquids such as glycerol. Overall, this review underscores the importance of interdisciplinary approaches in unraveling the complexities of liquid-liquid phase behavior and addressing fundamental questions.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c04552","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid-liquid phase transitions play a pivotal role in various scientific disciplines and technological applications, ranging from biology to materials science and geophysics. Understanding the behavior of materials undergoing these transitions provides valuable insights into complex systems and their dynamic properties. This review explores the implications of liquid-liquid phase transitions, particularly focusing on the transition between low-density liquid (LDL) and high-density liquid (HDL) phases. We investigate the thermodynamic, structural, and mechanistic aspects of these transitions, emphasizing their relevance in diverse fields. The creation of dynamic heterogeneities and critical fluctuations during liquid-liquid phase transitions is discussed, highlighting their role in shaping the phase behavior and dynamics of complex fluids. Experimental observations, including the use of dielectric spectroscopy and nonlinear methods, shed light on the intricate nature of these transitions. Our findings suggest a connection between liquid-liquid phase transitions and critical phenomena, with implications for understanding the supercooled state and phase behavior of hydrogen-bonded liquids such as glycerol. Overall, this review underscores the importance of interdisciplinary approaches in unraveling the complexities of liquid-liquid phase behavior and addressing fundamental questions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信