Mechanical Modulation of S0-S1 and S0-T1 Energy Gaps of 11-cis and All-trans Retinal Schiff Bases.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Alejandro Jodra, Luis Manuel Frutos
{"title":"Mechanical Modulation of S<sub>0</sub>-S<sub>1</sub> and S<sub>0</sub>-T<sub>1</sub> Energy Gaps of 11-<i>cis</i> and All-<i>trans</i> Retinal Schiff Bases.","authors":"Alejandro Jodra, Luis Manuel Frutos","doi":"10.1021/acs.jpcb.4c06631","DOIUrl":null,"url":null,"abstract":"<p><p>The retinal Schiff base is a chromophore of significant biological relevance, as it is responsible for capturing sunlight in rhodopsins, which are photoactive proteins found in various living organisms. Additionally, this chromophore is subjected to various mechanical forces in different proteins, which alter its structure and, consequently, its properties. To thoroughly understand the mechanical response limits of the retinal excitation energy, a simple first-order formalism has been developed to quantify the chromophore's optimal mechanical response to applied external forces (on the order of tens of pN). Additionally, the response to larger forces is analyzed by using an algorithm to explore the potential energy surfaces. It can be concluded that the retinal Schiff base exhibits a significant mechanical response and that the optimal forces and displacements involve certain coordinates typically of low frequency, showing differences between the S<sub>1</sub> and T<sub>1</sub> states, as well as between the 11-<i>cis</i> and all-<i>trans</i> isomers. Additionally, the possibility of mechanically modulating the bond length alternation using mechanical forces is ruled out.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c06631","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The retinal Schiff base is a chromophore of significant biological relevance, as it is responsible for capturing sunlight in rhodopsins, which are photoactive proteins found in various living organisms. Additionally, this chromophore is subjected to various mechanical forces in different proteins, which alter its structure and, consequently, its properties. To thoroughly understand the mechanical response limits of the retinal excitation energy, a simple first-order formalism has been developed to quantify the chromophore's optimal mechanical response to applied external forces (on the order of tens of pN). Additionally, the response to larger forces is analyzed by using an algorithm to explore the potential energy surfaces. It can be concluded that the retinal Schiff base exhibits a significant mechanical response and that the optimal forces and displacements involve certain coordinates typically of low frequency, showing differences between the S1 and T1 states, as well as between the 11-cis and all-trans isomers. Additionally, the possibility of mechanically modulating the bond length alternation using mechanical forces is ruled out.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信