Jinping Yang, Adam Balutowski, Megan Trivedi, Timothy A Wencewicz
{"title":"Chemical Logic of Peptide Branching by Iterative Nonlinear Nonribosomal Peptide Synthetases.","authors":"Jinping Yang, Adam Balutowski, Megan Trivedi, Timothy A Wencewicz","doi":"10.1021/acs.biochem.4c00749","DOIUrl":null,"url":null,"abstract":"<p><p>Branch-point syntheses in nonribosomal peptide assembly are rare but useful strategies to generate tripodal peptides with advantageous hexadentate iron-chelating capabilities, as seen in siderophores. However, the chemical logic underlying the peptide branching by nonribosomal peptide synthetase (NRPS) often remains complex and elusive. Here, we review the common strategies for the biosynthesis of branched nonribosomal peptides (NRPs) and present our biochemical investigation on the NRPS-catalyzed assembly of fimsbactin A, a branched mixed-ligand siderophore produced by the human pathogenic strain <i>Acinetobacter baumannii</i>. We untangled the unusual branching mechanism of fimsbactin A biosynthesis through a combination of bioinformatics, site-directed mutagenesis, <i>in vitro</i> reconstitution, molecular modeling, and molecular dynamics simulation. Our findings clarify the roles of the fimsbactin NRPS enzymes, uncovering catalytically redundant domains and identifying the multifunctional nature of the FbsF cyclization (Cy) domain. We demonstrate the dynamic interplay between l-serine and 2,3-dihydroxybenzoic acid derived dipeptides, partitioning between amide and ester forms via a 1,2-<i>N</i>-to-<i>O</i>-acyl shift orchestrated by the noncanonical, multichannel FbsF Cy domain. The branching event occurs in a secondary condensation event facilitated by this Cy domain with two dipeptidyl intermediates, which generates a branched tetrapeptide thioester. Finally, the terminal condensation domain of FbsG recruits a soluble nucleophile to release the final product. This study advances our understanding of the intricate biosynthetic pathways and chemical logic employed by NRPSs, shedding light on the mechanisms underlying the synthesis of complex branched peptides.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00749","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Branch-point syntheses in nonribosomal peptide assembly are rare but useful strategies to generate tripodal peptides with advantageous hexadentate iron-chelating capabilities, as seen in siderophores. However, the chemical logic underlying the peptide branching by nonribosomal peptide synthetase (NRPS) often remains complex and elusive. Here, we review the common strategies for the biosynthesis of branched nonribosomal peptides (NRPs) and present our biochemical investigation on the NRPS-catalyzed assembly of fimsbactin A, a branched mixed-ligand siderophore produced by the human pathogenic strain Acinetobacter baumannii. We untangled the unusual branching mechanism of fimsbactin A biosynthesis through a combination of bioinformatics, site-directed mutagenesis, in vitro reconstitution, molecular modeling, and molecular dynamics simulation. Our findings clarify the roles of the fimsbactin NRPS enzymes, uncovering catalytically redundant domains and identifying the multifunctional nature of the FbsF cyclization (Cy) domain. We demonstrate the dynamic interplay between l-serine and 2,3-dihydroxybenzoic acid derived dipeptides, partitioning between amide and ester forms via a 1,2-N-to-O-acyl shift orchestrated by the noncanonical, multichannel FbsF Cy domain. The branching event occurs in a secondary condensation event facilitated by this Cy domain with two dipeptidyl intermediates, which generates a branched tetrapeptide thioester. Finally, the terminal condensation domain of FbsG recruits a soluble nucleophile to release the final product. This study advances our understanding of the intricate biosynthetic pathways and chemical logic employed by NRPSs, shedding light on the mechanisms underlying the synthesis of complex branched peptides.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.