{"title":"Circular RNA circBNC2 inhibits tumorigenesis by modulating ferroptosis and acts as a nanotherapeutic target in prostate cancer","authors":"Xiang Pan, Kailai Chen, Wei Gao, Meiqi Xu, Fanlong Meng, Mengyuan Wu, Zi Qi Wang, Yun Qi Li, Wanhai Xu, Manjie Zhang, Yakun Luo","doi":"10.1186/s12943-025-02234-9","DOIUrl":null,"url":null,"abstract":"Metastasis is a leading cause of cancer-related death in castration-resistant prostate cancer (CRPC) patients. Circular RNAs (circRNAs) have emerged as key regulators of the metastasis of various cancers. However, the functional effects and regulatory mechanisms of circRNAs in metastatic CRPC (mCRPC) remain largely unknown. The expression of circBNC2 in prostate cancer (PCa), CRPC and neuroendocrine prostate cancer (NEPC) tissues was analyzed through bioinformatics analysis. Functional assays, including cell proliferation, migration, invasion and ferroptosis, were conducted in vitro and in vivo. The interactions between circBNC2, miR-4298, and ACSL6 were explored via luciferase reporter assays, RNA immunoprecipitation, and western blotting analysis. In addition, for the first time in PCa, we developed novel nanobowls (NBs) loaded with docetaxel (DTX) and circBNC2 (Dc-NBs) and evaluated the antitumor efficacy of Dc-NBs in a photothermal therapy (PTT) strategy. We identified a novel tumor-suppressive circRNA, circBNC2, in human PCa, CRPC and NEPC samples via bioinformatic analysis. CircBNC2 expression was significantly downregulated in PCa tissues and PCa cell lines. Functional assays demonstrated that circBNC2 inhibited PCa cell proliferation and migration both in vitro and in vivo. Mechanistically, circBNC2 acted as a sponge for miR-4298, and ACSL6 was identified as a direct target of the circBNC2/miR-4298 axis. Moreover, we demonstrated that ACSL6 is essential for mediating circBNC2-regulated ferroptosis in PCa cells. More importantly, we demonstrated the nanodelivery of Dc-NBs, which exhibited significant antitumor effects in both subcutaneous and metastatic PCa models. This study revealed the tumor-suppressive role of circBNC2 in mCRPC by driving ferroptosis via the circBNC2/miR-4298/ACSL6 axis. Additionally, we developed an efficient and safe PTT strategy based on a nanodelivery system that codelivers circBNC2 and DTX, highlighting its potential as a novel therapeutic approach for mCRPC.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"13 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02234-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metastasis is a leading cause of cancer-related death in castration-resistant prostate cancer (CRPC) patients. Circular RNAs (circRNAs) have emerged as key regulators of the metastasis of various cancers. However, the functional effects and regulatory mechanisms of circRNAs in metastatic CRPC (mCRPC) remain largely unknown. The expression of circBNC2 in prostate cancer (PCa), CRPC and neuroendocrine prostate cancer (NEPC) tissues was analyzed through bioinformatics analysis. Functional assays, including cell proliferation, migration, invasion and ferroptosis, were conducted in vitro and in vivo. The interactions between circBNC2, miR-4298, and ACSL6 were explored via luciferase reporter assays, RNA immunoprecipitation, and western blotting analysis. In addition, for the first time in PCa, we developed novel nanobowls (NBs) loaded with docetaxel (DTX) and circBNC2 (Dc-NBs) and evaluated the antitumor efficacy of Dc-NBs in a photothermal therapy (PTT) strategy. We identified a novel tumor-suppressive circRNA, circBNC2, in human PCa, CRPC and NEPC samples via bioinformatic analysis. CircBNC2 expression was significantly downregulated in PCa tissues and PCa cell lines. Functional assays demonstrated that circBNC2 inhibited PCa cell proliferation and migration both in vitro and in vivo. Mechanistically, circBNC2 acted as a sponge for miR-4298, and ACSL6 was identified as a direct target of the circBNC2/miR-4298 axis. Moreover, we demonstrated that ACSL6 is essential for mediating circBNC2-regulated ferroptosis in PCa cells. More importantly, we demonstrated the nanodelivery of Dc-NBs, which exhibited significant antitumor effects in both subcutaneous and metastatic PCa models. This study revealed the tumor-suppressive role of circBNC2 in mCRPC by driving ferroptosis via the circBNC2/miR-4298/ACSL6 axis. Additionally, we developed an efficient and safe PTT strategy based on a nanodelivery system that codelivers circBNC2 and DTX, highlighting its potential as a novel therapeutic approach for mCRPC.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.