Selective Functionalization of Trp residues via Copper-Catalyzed Ullmann Coupling

IF 4.6 1区 化学 Q1 CHEMISTRY, ORGANIC
Xinru Liang, Junjie Shi, Qiuju Zhong, Lai Li, Yutao Liu, Tong Sun, Junxi Liang, Xian-Ying Shi, Gao-Qiang Li, Mingyu Yang
{"title":"Selective Functionalization of Trp residues via Copper-Catalyzed Ullmann Coupling","authors":"Xinru Liang, Junjie Shi, Qiuju Zhong, Lai Li, Yutao Liu, Tong Sun, Junxi Liang, Xian-Ying Shi, Gao-Qiang Li, Mingyu Yang","doi":"10.1039/d4qo02073a","DOIUrl":null,"url":null,"abstract":"The modification of peptides can considerably change their functions, thus facilitating the development of peptides for use as drugs, therapeutics, diagnostics, and in chemical biology. Transition-metal catalyzed cross-coupling is a promising method to accomplish peptide modification, but the chemoselective introduction of a new C(sp2)−N bond at a tryptophan residue is a challenging yet crucial task. Herein, the functionalization of peptides achieved through the copper-catalyzed Ullmann coupling of tryptophan with aryl halides containing multiple functional groups is reported, which enabled the arylation of indole side chain of tryptophan. This method is featured with remarkable tolerance of diverse functional groups, scalability, and distinct chemoselectivity toward tryptophan residues. The fusion of different functional groups demonstrated the potential utility of this approach, offering new avenues to modify the side chains of proteinogenic amino acids.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"1 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qo02073a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The modification of peptides can considerably change their functions, thus facilitating the development of peptides for use as drugs, therapeutics, diagnostics, and in chemical biology. Transition-metal catalyzed cross-coupling is a promising method to accomplish peptide modification, but the chemoselective introduction of a new C(sp2)−N bond at a tryptophan residue is a challenging yet crucial task. Herein, the functionalization of peptides achieved through the copper-catalyzed Ullmann coupling of tryptophan with aryl halides containing multiple functional groups is reported, which enabled the arylation of indole side chain of tryptophan. This method is featured with remarkable tolerance of diverse functional groups, scalability, and distinct chemoselectivity toward tryptophan residues. The fusion of different functional groups demonstrated the potential utility of this approach, offering new avenues to modify the side chains of proteinogenic amino acids.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Chemistry Frontiers
Organic Chemistry Frontiers CHEMISTRY, ORGANIC-
CiteScore
7.90
自引率
11.10%
发文量
686
审稿时长
1 months
期刊介绍: Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信