Chilwatun Nasiroh, Ramy F. Izzah, Fiki T. Akbar, Bobby E. Gunara
{"title":"Inflation and acceleration of the universe from nonminimal coupling gravity with nonlinear electrodynamics","authors":"Chilwatun Nasiroh, Ramy F. Izzah, Fiki T. Akbar, Bobby E. Gunara","doi":"10.1007/s10714-025-03358-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a nonminimal coupling model between gravity and nonlinear electrodynamics with cosmological constant. This cosmological model is designed to account for both the inflationary epoch of the early universe and the current phase of accelerated cosmic expansion. The nonlinear electrodynamic fields provide a mechanism for a graceful exit from the inflationary period, preventing the universe from entering an eternal inflation state. The addition of nonminimal coupling plays a crucial role in shaping the early evolution of the universe. We compare the theoretical predictions of our model with recent observational data and other leading cosmological models, showing that our approach provides a viable and competitive explanation for key aspects of the universe’s evolution. Our results suggest that this model offers a consistent and compelling framework to explain both early-time inflation and the late-time accelerated expansion of the universe, in line with current observations.\n</p>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"17 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10714-025-03358-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider a nonminimal coupling model between gravity and nonlinear electrodynamics with cosmological constant. This cosmological model is designed to account for both the inflationary epoch of the early universe and the current phase of accelerated cosmic expansion. The nonlinear electrodynamic fields provide a mechanism for a graceful exit from the inflationary period, preventing the universe from entering an eternal inflation state. The addition of nonminimal coupling plays a crucial role in shaping the early evolution of the universe. We compare the theoretical predictions of our model with recent observational data and other leading cosmological models, showing that our approach provides a viable and competitive explanation for key aspects of the universe’s evolution. Our results suggest that this model offers a consistent and compelling framework to explain both early-time inflation and the late-time accelerated expansion of the universe, in line with current observations.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.