TRTST: Arbitrary High-Quality Text-Guided Style Transfer With Transformers

Haibo Chen;Zhoujie Wang;Lei Zhao;Jun Li;Jian Yang
{"title":"TRTST: Arbitrary High-Quality Text-Guided Style Transfer With Transformers","authors":"Haibo Chen;Zhoujie Wang;Lei Zhao;Jun Li;Jian Yang","doi":"10.1109/TIP.2025.3530822","DOIUrl":null,"url":null,"abstract":"Text-guided style transfer aims to repaint a content image with the target style described by a text prompt, offering greater flexibility and creativity compared to traditional image-guided style transfer. Despite the potential, existing text-guided style transfer methods often suffer from many issues, including insufficient visual quality, poor generalization ability, or a reliance on large amounts of paired training data. To address these limitations, we leverage the inherent strengths of transformers in handling multimodal data and propose a novel transformer-based framework called TRTST that not only achieves unpaired arbitrary text-guided style transfer but also significantly improves the visual quality. Specifically, TRTST explores combining a text transformer encoder with an image transformer encoder to project the input text prompt and content image into a joint embedding space and extract the desired style and content features. These features are then input into a multimodal co-attention module to stylize the image sequence based on the text sequence. We also propose a new adaptive parametric positional encoding (APPE) scheme which can adaptively produce different positional encodings to optimally match different inputs with a position encoder. In addition, to further improve content preservation, we introduce a text-guided identity loss to our model. Extensive results and comparisons are conducted to demonstrate the effectiveness and superiority of our method.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"759-771"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10851799/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Text-guided style transfer aims to repaint a content image with the target style described by a text prompt, offering greater flexibility and creativity compared to traditional image-guided style transfer. Despite the potential, existing text-guided style transfer methods often suffer from many issues, including insufficient visual quality, poor generalization ability, or a reliance on large amounts of paired training data. To address these limitations, we leverage the inherent strengths of transformers in handling multimodal data and propose a novel transformer-based framework called TRTST that not only achieves unpaired arbitrary text-guided style transfer but also significantly improves the visual quality. Specifically, TRTST explores combining a text transformer encoder with an image transformer encoder to project the input text prompt and content image into a joint embedding space and extract the desired style and content features. These features are then input into a multimodal co-attention module to stylize the image sequence based on the text sequence. We also propose a new adaptive parametric positional encoding (APPE) scheme which can adaptively produce different positional encodings to optimally match different inputs with a position encoder. In addition, to further improve content preservation, we introduce a text-guided identity loss to our model. Extensive results and comparisons are conducted to demonstrate the effectiveness and superiority of our method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信