GCSTG: Generating Class-Confusion-Aware Samples With a Tree-Structure Graph for Few-Shot Object Detection

Longrong Yang;Hanbin Zhao;Hongliang Li;Liang Qiao;Ziwei Yang;Xi Li
{"title":"GCSTG: Generating Class-Confusion-Aware Samples With a Tree-Structure Graph for Few-Shot Object Detection","authors":"Longrong Yang;Hanbin Zhao;Hongliang Li;Liang Qiao;Ziwei Yang;Xi Li","doi":"10.1109/TIP.2025.3530792","DOIUrl":null,"url":null,"abstract":"Few-Shot Object Detection (FSOD) aims to detect the objects of novel classes using only a few manually annotated samples. With the few novel class samples, learning the inter-class relationships among foreground and constructing the corresponding class hierarchy in FSOD is a challenging task. The poor construction of the class hierarchy will result in the inter-class confusion problem, which has been identified as a primary cause of inferior performance in novel classes by recent FSOD methods. In this work, we further find that the intra-super-class confusion, where samples are misclassified as classes within their associated super-classes, is the main challenge in solving the confusion problem. To solve this issue, this work generates class-confusion-aware samples with a pre-defined tree-structure graph, for helping models to construct a precise class hierarchy. In precise, for generating class-confusion-aware samples, we add the noise into available samples and update the noise to maximize confidence scores on associated confusion categories of samples. Then, a confusion-aware curriculum learning strategy is proposed to make generated samples gradually participate in the training, which benefits the model convergence while learning the generated samples. Experimental results show that our method can be used as a plug-in in recent FSOD methods and consistently improve the model performance.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"772-784"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10851817/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Few-Shot Object Detection (FSOD) aims to detect the objects of novel classes using only a few manually annotated samples. With the few novel class samples, learning the inter-class relationships among foreground and constructing the corresponding class hierarchy in FSOD is a challenging task. The poor construction of the class hierarchy will result in the inter-class confusion problem, which has been identified as a primary cause of inferior performance in novel classes by recent FSOD methods. In this work, we further find that the intra-super-class confusion, where samples are misclassified as classes within their associated super-classes, is the main challenge in solving the confusion problem. To solve this issue, this work generates class-confusion-aware samples with a pre-defined tree-structure graph, for helping models to construct a precise class hierarchy. In precise, for generating class-confusion-aware samples, we add the noise into available samples and update the noise to maximize confidence scores on associated confusion categories of samples. Then, a confusion-aware curriculum learning strategy is proposed to make generated samples gradually participate in the training, which benefits the model convergence while learning the generated samples. Experimental results show that our method can be used as a plug-in in recent FSOD methods and consistently improve the model performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信