ESCARGOT: an AI agent leveraging large language models, dynamic graph of thoughts, and biomedical knowledge graphs for enhanced reasoning.

Nicholas Matsumoto, Hyunjun Choi, Jay Moran, Miguel E Hernandez, Mythreye Venkatesan, Xi Li, Jui-Hsuan Chang, Paul Wang, Jason H Moore
{"title":"ESCARGOT: an AI agent leveraging large language models, dynamic graph of thoughts, and biomedical knowledge graphs for enhanced reasoning.","authors":"Nicholas Matsumoto, Hyunjun Choi, Jay Moran, Miguel E Hernandez, Mythreye Venkatesan, Xi Li, Jui-Hsuan Chang, Paul Wang, Jason H Moore","doi":"10.1093/bioinformatics/btaf031","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>LLMs like GPT-4, despite their advancements, often produce hallucinations and struggle with integrating external knowledge effectively. While Retrieval-Augmented Generation (RAG) attempts to address this by incorporating external information, it faces significant challenges such as context length limitations and imprecise vector similarity search. ESCARGOT aims to overcome these issues by combining LLMs with a dynamic Graph of Thoughts and biomedical knowledge graphs, improving output reliability, and reducing hallucinations.</p><p><strong>Result: </strong>ESCARGOT significantly outperforms industry-standard RAG methods, particularly in open-ended questions that demand high precision. ESCARGOT also offers greater transparency in its reasoning process, allowing for the vetting of both code and knowledge requests, in contrast to the black-box nature of LLM-only or RAG-based approaches.</p><p><strong>Availability and implementation: </strong>ESCARGOT is available as a pip package and on GitHub at: https://github.com/EpistasisLab/ESCARGOT.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: LLMs like GPT-4, despite their advancements, often produce hallucinations and struggle with integrating external knowledge effectively. While Retrieval-Augmented Generation (RAG) attempts to address this by incorporating external information, it faces significant challenges such as context length limitations and imprecise vector similarity search. ESCARGOT aims to overcome these issues by combining LLMs with a dynamic Graph of Thoughts and biomedical knowledge graphs, improving output reliability, and reducing hallucinations.

Result: ESCARGOT significantly outperforms industry-standard RAG methods, particularly in open-ended questions that demand high precision. ESCARGOT also offers greater transparency in its reasoning process, allowing for the vetting of both code and knowledge requests, in contrast to the black-box nature of LLM-only or RAG-based approaches.

Availability and implementation: ESCARGOT is available as a pip package and on GitHub at: https://github.com/EpistasisLab/ESCARGOT.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信