Robust Automated Harmonization of Heterogeneous Data Through Ensemble Machine Learning: Algorithm Development and Validation Study.

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS
Doris Yang, Doudou Zhou, Steven Cai, Ziming Gan, Michael Pencina, Paul Avillach, Tianxi Cai, Chuan Hong
{"title":"Robust Automated Harmonization of Heterogeneous Data Through Ensemble Machine Learning: Algorithm Development and Validation Study.","authors":"Doris Yang, Doudou Zhou, Steven Cai, Ziming Gan, Michael Pencina, Paul Avillach, Tianxi Cai, Chuan Hong","doi":"10.2196/54133","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cohort studies contain rich clinical data across large and diverse patient populations and are a common source of observational data for clinical research. Because large scale cohort studies are both time and resource intensive, one alternative is to harmonize data from existing cohorts through multicohort studies. However, given differences in variable encoding, accurate variable harmonization is difficult.</p><p><strong>Objective: </strong>We propose SONAR (Semantic and Distribution-Based Harmonization) as a method for harmonizing variables across cohort studies to facilitate multicohort studies.</p><p><strong>Methods: </strong>SONAR used semantic learning from variable descriptions and distribution learning from study participant data. Our method learned an embedding vector for each variable and used pairwise cosine similarity to score the similarity between variables. This approach was built off 3 National Institutes of Health cohorts, including the Cardiovascular Health Study, the Multi-Ethnic Study of Atherosclerosis, and the Women's Health Initiative. We also used gold standard labels to further refine the embeddings in a supervised manner.</p><p><strong>Results: </strong>The method was evaluated using manually curated gold standard labels from the 3 National Institutes of Health cohorts. We evaluated both the intracohort and intercohort variable harmonization performance. The supervised SONAR method outperformed existing benchmark methods for almost all intracohort and intercohort comparisons using area under the curve and top-k accuracy metrics. Notably, SONAR was able to significantly improve harmonization of concepts that were difficult for existing semantic methods to harmonize.</p><p><strong>Conclusions: </strong>SONAR achieves accurate variable harmonization within and between cohort studies by harnessing the complementary strengths of semantic learning and variable distribution learning.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e54133"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11778729/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/54133","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cohort studies contain rich clinical data across large and diverse patient populations and are a common source of observational data for clinical research. Because large scale cohort studies are both time and resource intensive, one alternative is to harmonize data from existing cohorts through multicohort studies. However, given differences in variable encoding, accurate variable harmonization is difficult.

Objective: We propose SONAR (Semantic and Distribution-Based Harmonization) as a method for harmonizing variables across cohort studies to facilitate multicohort studies.

Methods: SONAR used semantic learning from variable descriptions and distribution learning from study participant data. Our method learned an embedding vector for each variable and used pairwise cosine similarity to score the similarity between variables. This approach was built off 3 National Institutes of Health cohorts, including the Cardiovascular Health Study, the Multi-Ethnic Study of Atherosclerosis, and the Women's Health Initiative. We also used gold standard labels to further refine the embeddings in a supervised manner.

Results: The method was evaluated using manually curated gold standard labels from the 3 National Institutes of Health cohorts. We evaluated both the intracohort and intercohort variable harmonization performance. The supervised SONAR method outperformed existing benchmark methods for almost all intracohort and intercohort comparisons using area under the curve and top-k accuracy metrics. Notably, SONAR was able to significantly improve harmonization of concepts that were difficult for existing semantic methods to harmonize.

Conclusions: SONAR achieves accurate variable harmonization within and between cohort studies by harnessing the complementary strengths of semantic learning and variable distribution learning.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信