Dissecting AlphaFold2's capabilities with limited sequence information.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-11-25 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbae187
Jannik Adrian Gut, Thomas Lemmin
{"title":"Dissecting AlphaFold2's capabilities with limited sequence information.","authors":"Jannik Adrian Gut, Thomas Lemmin","doi":"10.1093/bioadv/vbae187","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Protein structure prediction aims to infer a protein's three-dimensional (3D) structure from its amino acid sequence. Protein structure is pivotal for elucidating protein functions, interactions, and driving biotechnological innovation. The deep learning model AlphaFold2, has revolutionized this field by leveraging phylogenetic information from multiple sequence alignments (MSAs) to achieve remarkable accuracy in protein structure prediction. However, a key question remains: how well does AlphaFold2 understand protein structures? This study investigates AlphaFold2's capabilities when relying primarily on high-quality template structures, without the additional information provided by MSAs. By designing experiments that probe local and global structural understanding, we aimed to dissect its dependence on specific features and its ability to handle missing information. Our findings revealed AlphaFold2's reliance on sterically valid C <math><mi>β</mi></math> for correctly interpreting structural templates. Additionally, we observed its remarkable ability to recover 3D structures from certain perturbations and the negligible impact of the previous structure in recycling. Collectively, these results support the hypothesis that AlphaFold2 has learned an accurate biophysical energy function. However, this function seems most effective for local interactions. Our work advances understanding of how deep learning models predict protein structures and provides guidance for researchers aiming to overcome limitations in these models.</p><p><strong>Availability and implementation: </strong>Data and implementation are available at https://github.com/ibmm-unibe-ch/template-analysis.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbae187"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: Protein structure prediction aims to infer a protein's three-dimensional (3D) structure from its amino acid sequence. Protein structure is pivotal for elucidating protein functions, interactions, and driving biotechnological innovation. The deep learning model AlphaFold2, has revolutionized this field by leveraging phylogenetic information from multiple sequence alignments (MSAs) to achieve remarkable accuracy in protein structure prediction. However, a key question remains: how well does AlphaFold2 understand protein structures? This study investigates AlphaFold2's capabilities when relying primarily on high-quality template structures, without the additional information provided by MSAs. By designing experiments that probe local and global structural understanding, we aimed to dissect its dependence on specific features and its ability to handle missing information. Our findings revealed AlphaFold2's reliance on sterically valid C β for correctly interpreting structural templates. Additionally, we observed its remarkable ability to recover 3D structures from certain perturbations and the negligible impact of the previous structure in recycling. Collectively, these results support the hypothesis that AlphaFold2 has learned an accurate biophysical energy function. However, this function seems most effective for local interactions. Our work advances understanding of how deep learning models predict protein structures and provides guidance for researchers aiming to overcome limitations in these models.

Availability and implementation: Data and implementation are available at https://github.com/ibmm-unibe-ch/template-analysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信