Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-12-20 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2596
Enshi Wang, Fakhri Alam Khan
{"title":"Design of a 3D emotion mapping model for visual feature analysis using improved Gaussian mixture models.","authors":"Enshi Wang, Fakhri Alam Khan","doi":"10.7717/peerj-cs.2596","DOIUrl":null,"url":null,"abstract":"<p><p>Given the integration of color emotion space information from multiple feature sources in multimodal recognition systems, effectively fusing this information presents a significant challenge. This article proposes a three-dimensional (3D) color-emotion space visual feature extraction model for multimodal data integration based on an improved Gaussian mixture model to address these issues. Unlike traditional methods, which often struggle with redundant information and high model complexity, our approach optimizes feature fusion by employing entropy and visual feature sequences. By integrating machine vision with six activation functions and utilizing multiple aesthetic features, the proposed method exhibits strong performance in a high emotion mapping accuracy (EMA) of 92.4%, emotion recognition precision (ERP) of 88.35%, and an emotion recognition F1 score (ERFS) of 96.22%. These improvements over traditional approaches highlight the model's effectiveness in reducing complexity while enhancing emotional recognition accuracy, positioning it as a more efficient solution for visual emotion analysis in multimedia applications. The findings indicate that the model significantly enhances emotional recognition accuracy.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2596"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753788/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2596","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Given the integration of color emotion space information from multiple feature sources in multimodal recognition systems, effectively fusing this information presents a significant challenge. This article proposes a three-dimensional (3D) color-emotion space visual feature extraction model for multimodal data integration based on an improved Gaussian mixture model to address these issues. Unlike traditional methods, which often struggle with redundant information and high model complexity, our approach optimizes feature fusion by employing entropy and visual feature sequences. By integrating machine vision with six activation functions and utilizing multiple aesthetic features, the proposed method exhibits strong performance in a high emotion mapping accuracy (EMA) of 92.4%, emotion recognition precision (ERP) of 88.35%, and an emotion recognition F1 score (ERFS) of 96.22%. These improvements over traditional approaches highlight the model's effectiveness in reducing complexity while enhancing emotional recognition accuracy, positioning it as a more efficient solution for visual emotion analysis in multimedia applications. The findings indicate that the model significantly enhances emotional recognition accuracy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信