Emergent robust oscillatory dynamics in the interlocked feedback-feedforward loops

IF 1.9 4区 生物学 Q4 CELL BIOLOGY
Guturu L. Harika, Krishnamachari Sriram
{"title":"Emergent robust oscillatory dynamics in the interlocked feedback-feedforward loops","authors":"Guturu L. Harika,&nbsp;Krishnamachari Sriram","doi":"10.1049/syb2.12111","DOIUrl":null,"url":null,"abstract":"<p>One of the challenges that beset modelling complex biological networks is to relate networks to function to dynamics. A further challenge is deciphering the cellular function and dynamics that can change drastically when the network edge is tinkered with by adding or removing it. To illustrate this, the authors took a well-studied three-variable Goodwin oscillatory motif with only a negative feedback loop. To this motif, an edge was added that results in an emergent structure consisting of new feedforward and feedback loops while retaining Goodwin's original negative feedback loop. To relate emergent structure to oscillatory dynamics, the authors took all the combinations of edge signs in the interlocked motif. Bifurcation analysis reveals that all the structural combinations can be grouped into two categories based on their unique dynamics. These two groups also exhibit unique amplitude-frequency (amp-freq) plots. These two categories are attributed to the emergence of interlocked motifs with specific edge signs. To support the ideas, a well-studied plant circadian model of <i>Arabidopsis thaliana</i> was taken to illustrate the importance of interlocked motifs in fine-tuning amplitude and frequency in circadian oscillators. The authors briefly discuss its implications for central oscillators' adaptation to different environmental cues.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771794/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12111","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

One of the challenges that beset modelling complex biological networks is to relate networks to function to dynamics. A further challenge is deciphering the cellular function and dynamics that can change drastically when the network edge is tinkered with by adding or removing it. To illustrate this, the authors took a well-studied three-variable Goodwin oscillatory motif with only a negative feedback loop. To this motif, an edge was added that results in an emergent structure consisting of new feedforward and feedback loops while retaining Goodwin's original negative feedback loop. To relate emergent structure to oscillatory dynamics, the authors took all the combinations of edge signs in the interlocked motif. Bifurcation analysis reveals that all the structural combinations can be grouped into two categories based on their unique dynamics. These two groups also exhibit unique amplitude-frequency (amp-freq) plots. These two categories are attributed to the emergence of interlocked motifs with specific edge signs. To support the ideas, a well-studied plant circadian model of Arabidopsis thaliana was taken to illustrate the importance of interlocked motifs in fine-tuning amplitude and frequency in circadian oscillators. The authors briefly discuss its implications for central oscillators' adaptation to different environmental cues.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信