Multi-modal prediction of extracorporeal support-a resource intensive therapy, utilizing a large national database.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2025-01-06 eCollection Date: 2025-02-01 DOI:10.1093/jamiaopen/ooae158
Daoyi Zhu, Bing Xue, Neel Shah, Philip Richard Orrin Payne, Chenyang Lu, Ahmed Sameh Said
{"title":"Multi-modal prediction of extracorporeal support-a resource intensive therapy, utilizing a large national database.","authors":"Daoyi Zhu, Bing Xue, Neel Shah, Philip Richard Orrin Payne, Chenyang Lu, Ahmed Sameh Said","doi":"10.1093/jamiaopen/ooae158","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Extracorporeal membrane oxygenation (ECMO) is among the most resource-intensive therapies in critical care. The COVID-19 pandemic highlighted the lack of ECMO resource allocation tools. We aimed to develop a continuous ECMO risk prediction model to enhance patient triage and resource allocation.</p><p><strong>Material and methods: </strong>We leveraged multimodal data from the National COVID Cohort Collaborative (N3C) to develop a hierarchical deep learning model, labeled \"PreEMPT-ECMO\" (Prediction, Early Monitoring, and Proactive Triage for ECMO) which integrates static and multi-granularity time series features to generate continuous predictions of ECMO utilization. Model performance was assessed across time points ranging from 0 to 96 hours prior to ECMO initiation, using both accuracy and precision metrics.</p><p><strong>Results: </strong>Between January 2020 and May 2023, 101 400 patients were included, with 1298 (1.28%) supported on ECMO. PreEMPT-ECMO outperformed established predictive models, including Logistic Regression, Support Vector Machine, Random Forest, and Extreme Gradient Boosting Tree, in both accuracy and precision at all time points. Model interpretation analysis also highlighted variations in feature contributions through each patient's clinical course.</p><p><strong>Discussion and conclusions: </strong>We developed a hierarchical model for continuous ECMO use prediction, utilizing a large multicenter dataset incorporating both static and time series variables of various granularities. This novel approach reflects the nuanced decision-making process inherent in ECMO initiation and has the potential to be used as an early alert tool to guide patient triage and ECMO resource allocation. Future directions include prospective validation and generalizability on non-COVID-19 refractory respiratory failure, aiming to improve patient outcomes.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 1","pages":"ooae158"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Extracorporeal membrane oxygenation (ECMO) is among the most resource-intensive therapies in critical care. The COVID-19 pandemic highlighted the lack of ECMO resource allocation tools. We aimed to develop a continuous ECMO risk prediction model to enhance patient triage and resource allocation.

Material and methods: We leveraged multimodal data from the National COVID Cohort Collaborative (N3C) to develop a hierarchical deep learning model, labeled "PreEMPT-ECMO" (Prediction, Early Monitoring, and Proactive Triage for ECMO) which integrates static and multi-granularity time series features to generate continuous predictions of ECMO utilization. Model performance was assessed across time points ranging from 0 to 96 hours prior to ECMO initiation, using both accuracy and precision metrics.

Results: Between January 2020 and May 2023, 101 400 patients were included, with 1298 (1.28%) supported on ECMO. PreEMPT-ECMO outperformed established predictive models, including Logistic Regression, Support Vector Machine, Random Forest, and Extreme Gradient Boosting Tree, in both accuracy and precision at all time points. Model interpretation analysis also highlighted variations in feature contributions through each patient's clinical course.

Discussion and conclusions: We developed a hierarchical model for continuous ECMO use prediction, utilizing a large multicenter dataset incorporating both static and time series variables of various granularities. This novel approach reflects the nuanced decision-making process inherent in ECMO initiation and has the potential to be used as an early alert tool to guide patient triage and ECMO resource allocation. Future directions include prospective validation and generalizability on non-COVID-19 refractory respiratory failure, aiming to improve patient outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信