SPEMix: a lightweight method via superclass pseudo-label and efficient mixup for echocardiogram view classification.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-01-08 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1467218
Shizhou Ma, Yifeng Zhang, Delong Li, Yixin Sun, Zhaowen Qiu, Lei Wei, Suyu Dong
{"title":"SPEMix: a lightweight method via superclass pseudo-label and efficient mixup for echocardiogram view classification.","authors":"Shizhou Ma, Yifeng Zhang, Delong Li, Yixin Sun, Zhaowen Qiu, Lei Wei, Suyu Dong","doi":"10.3389/frai.2024.1467218","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In clinical, the echocardiogram is the most widely used for diagnosing heart diseases. Different heart diseases are diagnosed based on different views of the echocardiogram images, so efficient echocardiogram view classification can help cardiologists diagnose heart disease rapidly. Echocardiogram view classification is mainly divided into supervised and semi-supervised methods. The supervised echocardiogram view classification methods have worse generalization performance due to the difficulty of labeling echocardiographic images, while the semi-supervised echocardiogram view classification can achieve acceptable results via a little labeled data. However, the current semi-supervised echocardiogram view classification faces challenges of declining accuracy due to out-of-distribution data and is constrained by complex model structures in clinical application.</p><p><strong>Methods: </strong>To deal with the above challenges, we proposed a novel open-set semi-supervised method for echocardiogram view classification, SPEMix, which can improve performance and generalization by leveraging out-of-distribution unlabeled data. Our SPEMix consists of two core blocks, DAMix Block and SP Block. DAMix Block can generate a mixed mask that focuses on the valuable regions of echocardiograms at the pixel level to generate high-quality augmented echocardiograms for unlabeled data, improving classification accuracy. SP Block can generate a superclass pseudo-label of unlabeled data from the perspective of the superclass probability distribution, improving the classification generalization by leveraging the superclass pseudolabel.</p><p><strong>Results: </strong>We also evaluate the generalization of our method on the Unity dataset and the CAMUS dataset. The lightweight model trained with SPEMix can achieve the best classification performance on the publicly available TMED2 dataset.</p><p><strong>Discussion: </strong>For the first time, we applied the lightweight model to the echocardiogram view classification, which can solve the limits of the clinical application due to the complex model architecture and help cardiologists diagnose heart diseases more efficiently.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1467218"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751229/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1467218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: In clinical, the echocardiogram is the most widely used for diagnosing heart diseases. Different heart diseases are diagnosed based on different views of the echocardiogram images, so efficient echocardiogram view classification can help cardiologists diagnose heart disease rapidly. Echocardiogram view classification is mainly divided into supervised and semi-supervised methods. The supervised echocardiogram view classification methods have worse generalization performance due to the difficulty of labeling echocardiographic images, while the semi-supervised echocardiogram view classification can achieve acceptable results via a little labeled data. However, the current semi-supervised echocardiogram view classification faces challenges of declining accuracy due to out-of-distribution data and is constrained by complex model structures in clinical application.

Methods: To deal with the above challenges, we proposed a novel open-set semi-supervised method for echocardiogram view classification, SPEMix, which can improve performance and generalization by leveraging out-of-distribution unlabeled data. Our SPEMix consists of two core blocks, DAMix Block and SP Block. DAMix Block can generate a mixed mask that focuses on the valuable regions of echocardiograms at the pixel level to generate high-quality augmented echocardiograms for unlabeled data, improving classification accuracy. SP Block can generate a superclass pseudo-label of unlabeled data from the perspective of the superclass probability distribution, improving the classification generalization by leveraging the superclass pseudolabel.

Results: We also evaluate the generalization of our method on the Unity dataset and the CAMUS dataset. The lightweight model trained with SPEMix can achieve the best classification performance on the publicly available TMED2 dataset.

Discussion: For the first time, we applied the lightweight model to the echocardiogram view classification, which can solve the limits of the clinical application due to the complex model architecture and help cardiologists diagnose heart diseases more efficiently.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信