Fostering effective hybrid human-LLM reasoning and decision making.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-01-08 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1464690
Andrea Passerini, Aryo Gema, Pasquale Minervini, Burcu Sayin, Katya Tentori
{"title":"Fostering effective hybrid human-LLM reasoning and decision making.","authors":"Andrea Passerini, Aryo Gema, Pasquale Minervini, Burcu Sayin, Katya Tentori","doi":"10.3389/frai.2024.1464690","DOIUrl":null,"url":null,"abstract":"<p><p>The impressive performance of modern Large Language Models (LLMs) across a wide range of tasks, along with their often non-trivial errors, has garnered unprecedented attention regarding the potential of AI and its impact on everyday life. While considerable effort has been and continues to be dedicated to overcoming the limitations of current models, the potentials and risks of human-LLM collaboration remain largely underexplored. In this perspective, we argue that enhancing the focus on human-LLM interaction should be a primary target for future LLM research. Specifically, we will briefly examine some of the biases that may hinder effective collaboration between humans and machines, explore potential solutions, and discuss two broader goals-mutual understanding and complementary team performance-that, in our view, future research should address to enhance effective human-LLM reasoning and decision-making.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1464690"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751230/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1464690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The impressive performance of modern Large Language Models (LLMs) across a wide range of tasks, along with their often non-trivial errors, has garnered unprecedented attention regarding the potential of AI and its impact on everyday life. While considerable effort has been and continues to be dedicated to overcoming the limitations of current models, the potentials and risks of human-LLM collaboration remain largely underexplored. In this perspective, we argue that enhancing the focus on human-LLM interaction should be a primary target for future LLM research. Specifically, we will briefly examine some of the biases that may hinder effective collaboration between humans and machines, explore potential solutions, and discuss two broader goals-mutual understanding and complementary team performance-that, in our view, future research should address to enhance effective human-LLM reasoning and decision-making.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信