Evaluating dimensionality reduction of comorbidities for predictive modeling in individuals with neurofibromatosis type 1.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2025-01-22 eCollection Date: 2025-02-01 DOI:10.1093/jamiaopen/ooae157
Aditi Gupta, Ethan Hillis, Inez Y Oh, Stephanie M Morris, Zach Abrams, Randi E Foraker, David H Gutmann, Philip R O Payne
{"title":"Evaluating dimensionality reduction of comorbidities for predictive modeling in individuals with neurofibromatosis type 1.","authors":"Aditi Gupta, Ethan Hillis, Inez Y Oh, Stephanie M Morris, Zach Abrams, Randi E Foraker, David H Gutmann, Philip R O Payne","doi":"10.1093/jamiaopen/ooae157","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Dimensionality reduction techniques aim to enhance the performance of machine learning (ML) models by reducing noise and mitigating overfitting. We sought to compare the effect of different dimensionality reduction methods for comorbidity features extracted from electronic health records (EHRs) on the performance of ML models for predicting the development of various sub-phenotypes in children with Neurofibromatosis type 1 (NF1).</p><p><strong>Materials and methods: </strong>EHR-derived data from pediatric subjects with a confirmed clinical diagnosis of NF1 were used to create 10 unique comorbidities code-derived feature sets by incorporating dimensionality reduction techniques using raw International Classification of Diseases codes, Clinical Classifications Software Refined, and Phecode mapping schemes. We compared the performance of logistic regression, XGBoost, and random forest models utilizing each feature set.</p><p><strong>Results: </strong>XGBoost-based predictive models were most successful at predicting NF1 sub-phenotypes. Overall, features based on domain knowledge-informed mapping schema performed better than unsupervised feature reduction methods. High-level features exhibited the worst performance across models and outcomes, suggesting excessive information loss with over-aggregation of features.</p><p><strong>Discussion: </strong>Model performance is significantly impacted by dimensionality reduction techniques and varies by specific ML algorithm and outcome being predicted. Automated methods using existing knowledge and ontology databases can effectively aggregate features extracted from EHRs.</p><p><strong>Conclusion: </strong>Dimensionality reduction through feature aggregation can enhance the performance of ML models, particularly in high-dimensional datasets with small sample sizes, commonly found in EHRs health applications. However, if not carefully optimized, it can lead to information loss and data oversimplification, potentially adversely affecting model performance.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 1","pages":"ooae157"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Dimensionality reduction techniques aim to enhance the performance of machine learning (ML) models by reducing noise and mitigating overfitting. We sought to compare the effect of different dimensionality reduction methods for comorbidity features extracted from electronic health records (EHRs) on the performance of ML models for predicting the development of various sub-phenotypes in children with Neurofibromatosis type 1 (NF1).

Materials and methods: EHR-derived data from pediatric subjects with a confirmed clinical diagnosis of NF1 were used to create 10 unique comorbidities code-derived feature sets by incorporating dimensionality reduction techniques using raw International Classification of Diseases codes, Clinical Classifications Software Refined, and Phecode mapping schemes. We compared the performance of logistic regression, XGBoost, and random forest models utilizing each feature set.

Results: XGBoost-based predictive models were most successful at predicting NF1 sub-phenotypes. Overall, features based on domain knowledge-informed mapping schema performed better than unsupervised feature reduction methods. High-level features exhibited the worst performance across models and outcomes, suggesting excessive information loss with over-aggregation of features.

Discussion: Model performance is significantly impacted by dimensionality reduction techniques and varies by specific ML algorithm and outcome being predicted. Automated methods using existing knowledge and ontology databases can effectively aggregate features extracted from EHRs.

Conclusion: Dimensionality reduction through feature aggregation can enhance the performance of ML models, particularly in high-dimensional datasets with small sample sizes, commonly found in EHRs health applications. However, if not carefully optimized, it can lead to information loss and data oversimplification, potentially adversely affecting model performance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信