Multiple Imputation for Longitudinal Data: A Tutorial.

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Rushani Wijesuriya, Margarita Moreno-Betancur, John B Carlin, Ian R White, Matteo Quartagno, Katherine J Lee
{"title":"Multiple Imputation for Longitudinal Data: A Tutorial.","authors":"Rushani Wijesuriya, Margarita Moreno-Betancur, John B Carlin, Ian R White, Matteo Quartagno, Katherine J Lee","doi":"10.1002/sim.10274","DOIUrl":null,"url":null,"abstract":"<p><p>Longitudinal studies are frequently used in medical research and involve collecting repeated measures on individuals over time. Observations from the same individual are invariably correlated and thus an analytic approach that accounts for this clustering by individual is required. While almost all research suffers from missing data, this can be particularly problematic in longitudinal studies as participation often becomes harder to maintain over time. Multiple imputation (MI) is widely used to handle missing data in such studies. When using MI, it is important that the imputation model is compatible with the proposed analysis model. In a longitudinal analysis, this implies that the clustering considered in the analysis model should be reflected in the imputation process. Several MI approaches have been proposed to impute incomplete longitudinal data, such as treating repeated measurements of the same variable as distinct variables or using generalized linear mixed imputation models. However, the uptake of these methods has been limited, as they require additional data manipulation and use of advanced imputation procedures. In this tutorial, we review the available MI approaches that can be used for handling incomplete longitudinal data, including where individuals are clustered within higher-level clusters. We illustrate implementation with replicable R and Stata code using a case study from the Childhood to Adolescence Transition Study.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 3-4","pages":"e10274"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755704/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10274","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Longitudinal studies are frequently used in medical research and involve collecting repeated measures on individuals over time. Observations from the same individual are invariably correlated and thus an analytic approach that accounts for this clustering by individual is required. While almost all research suffers from missing data, this can be particularly problematic in longitudinal studies as participation often becomes harder to maintain over time. Multiple imputation (MI) is widely used to handle missing data in such studies. When using MI, it is important that the imputation model is compatible with the proposed analysis model. In a longitudinal analysis, this implies that the clustering considered in the analysis model should be reflected in the imputation process. Several MI approaches have been proposed to impute incomplete longitudinal data, such as treating repeated measurements of the same variable as distinct variables or using generalized linear mixed imputation models. However, the uptake of these methods has been limited, as they require additional data manipulation and use of advanced imputation procedures. In this tutorial, we review the available MI approaches that can be used for handling incomplete longitudinal data, including where individuals are clustered within higher-level clusters. We illustrate implementation with replicable R and Stata code using a case study from the Childhood to Adolescence Transition Study.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信