Targeting human arginyltransferase and post-translational protein arginylation: a pharmacophore-based multilayer screening and molecular dynamics approach to discover novel inhibitors with therapeutic promise.
R Naga, S Poddar, A Jana, S Maity, P Kar, D R Banerjee, S Saha
{"title":"Targeting human arginyltransferase and post-translational protein arginylation: a pharmacophore-based multilayer screening and molecular dynamics approach to discover novel inhibitors with therapeutic promise.","authors":"R Naga, S Poddar, A Jana, S Maity, P Kar, D R Banerjee, S Saha","doi":"10.1080/1062936X.2025.2452001","DOIUrl":null,"url":null,"abstract":"<p><p>Protein arginylation mediated by arginyltransferase 1 is a crucial regulator of cellular processes in eukaryotes by affecting protein stability, function, and interaction with other macromolecules. This enzyme and its targets are of immense interest for modulating cellular processes in diseased states like obesity and cancer. Despite being an important target molecule, no highly potent drug against this enzyme exists. Therefore, this study focuses on discovering potential inhibitors of human arginyltransferase 1 by computational approaches where screening of over 300,000 compounds from natural and synthetic databases was done using a pharmacophore model based on common features among known inhibitors. The drug-like properties and potential toxicity of the compounds were also assessed in the study to ensure safety and effectiveness. Advanced methods, including molecular simulations and binding free energy calculations, were performed to evaluate the stability and binding efficacy of the most promising candidates. Ultimately, three compounds were identified as potent inhibitors, offering new avenues for developing therapies targeting arginyltransferase 1.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"1-28"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2025.2452001","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein arginylation mediated by arginyltransferase 1 is a crucial regulator of cellular processes in eukaryotes by affecting protein stability, function, and interaction with other macromolecules. This enzyme and its targets are of immense interest for modulating cellular processes in diseased states like obesity and cancer. Despite being an important target molecule, no highly potent drug against this enzyme exists. Therefore, this study focuses on discovering potential inhibitors of human arginyltransferase 1 by computational approaches where screening of over 300,000 compounds from natural and synthetic databases was done using a pharmacophore model based on common features among known inhibitors. The drug-like properties and potential toxicity of the compounds were also assessed in the study to ensure safety and effectiveness. Advanced methods, including molecular simulations and binding free energy calculations, were performed to evaluate the stability and binding efficacy of the most promising candidates. Ultimately, three compounds were identified as potent inhibitors, offering new avenues for developing therapies targeting arginyltransferase 1.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.