Machine-learning versus traditional methods for prediction of all-cause mortality after transcatheter aortic valve implantation: a systematic review and meta-analysis.

IF 2.8 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Ammar Zaka, Cecil Mustafiz, Daud Mutahar, Shreyans Sinhal, James Gorcilov, Benjamin Muston, Shaun Evans, Aashray Gupta, Brandon Stretton, Joshua Kovoor, Naim Mridha, Gopal Sivagangabalan, Aravinda Thiagalingam, Fabio Ramponi, Justin Chan, Jayme Bennetts, Dale J Murdoch, Sarah Zaman, Clara K Chow, Rohan Jayasinghe, Pramesh Kovoor, Stephen Bacchi
{"title":"Machine-learning versus traditional methods for prediction of all-cause mortality after transcatheter aortic valve implantation: a systematic review and meta-analysis.","authors":"Ammar Zaka, Cecil Mustafiz, Daud Mutahar, Shreyans Sinhal, James Gorcilov, Benjamin Muston, Shaun Evans, Aashray Gupta, Brandon Stretton, Joshua Kovoor, Naim Mridha, Gopal Sivagangabalan, Aravinda Thiagalingam, Fabio Ramponi, Justin Chan, Jayme Bennetts, Dale J Murdoch, Sarah Zaman, Clara K Chow, Rohan Jayasinghe, Pramesh Kovoor, Stephen Bacchi","doi":"10.1136/openhrt-2024-002779","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate mortality prediction following transcatheter aortic valve implantation (TAVI) is essential for mitigating risk, shared decision-making and periprocedural planning. Surgical risk models have demonstrated modest discriminative value for patients undergoing TAVI and are typically poorly calibrated, with incremental improvements seen in TAVI-specific models. Machine learning (ML) models offer an alternative risk stratification that may offer improved predictive accuracy.</p><p><strong>Methods: </strong>PubMed, EMBASE, Web of Science and Cochrane databases were searched until 16 December 2023 for studies comparing ML models with traditional statistical methods for event prediction after TAVI. The primary outcome was comparative discrimination measured by C-statistics with 95% CIs between ML models and traditional methods in estimating the risk of all-cause mortality at 30 days and 1 year.</p><p><strong>Results: </strong>Nine studies were included (29 608 patients). The summary C-statistic of the top performing ML models was 0.79 (95% CI 0.71 to 0.86), compared with traditional methods 0.68 (95% CI 0.61 to 0.76). The difference in C-statistic between all ML models and traditional methods was 0.11 (p<0.00001). Of the nine studies, two studies provided externally validated models and three studies reported calibration. Prediction Model Risk of Bias Assessment Tool tool demonstrated high risk of bias for all studies.</p><p><strong>Conclusion: </strong>ML models outperformed traditional risk scores in the discrimination of all-cause mortality following TAVI. While integration of ML algorithms into electronic healthcare systems may improve periprocedural risk stratification, immediate implementation in the clinical setting remains uncertain. Further research is required to overcome methodological and validation limitations.</p>","PeriodicalId":19505,"journal":{"name":"Open Heart","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784135/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Heart","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/openhrt-2024-002779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Accurate mortality prediction following transcatheter aortic valve implantation (TAVI) is essential for mitigating risk, shared decision-making and periprocedural planning. Surgical risk models have demonstrated modest discriminative value for patients undergoing TAVI and are typically poorly calibrated, with incremental improvements seen in TAVI-specific models. Machine learning (ML) models offer an alternative risk stratification that may offer improved predictive accuracy.

Methods: PubMed, EMBASE, Web of Science and Cochrane databases were searched until 16 December 2023 for studies comparing ML models with traditional statistical methods for event prediction after TAVI. The primary outcome was comparative discrimination measured by C-statistics with 95% CIs between ML models and traditional methods in estimating the risk of all-cause mortality at 30 days and 1 year.

Results: Nine studies were included (29 608 patients). The summary C-statistic of the top performing ML models was 0.79 (95% CI 0.71 to 0.86), compared with traditional methods 0.68 (95% CI 0.61 to 0.76). The difference in C-statistic between all ML models and traditional methods was 0.11 (p<0.00001). Of the nine studies, two studies provided externally validated models and three studies reported calibration. Prediction Model Risk of Bias Assessment Tool tool demonstrated high risk of bias for all studies.

Conclusion: ML models outperformed traditional risk scores in the discrimination of all-cause mortality following TAVI. While integration of ML algorithms into electronic healthcare systems may improve periprocedural risk stratification, immediate implementation in the clinical setting remains uncertain. Further research is required to overcome methodological and validation limitations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Heart
Open Heart CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
4.60
自引率
3.70%
发文量
145
审稿时长
20 weeks
期刊介绍: Open Heart is an online-only, open access cardiology journal that aims to be “open” in many ways: open access (free access for all readers), open peer review (unblinded peer review) and open data (data sharing is encouraged). The goal is to ensure maximum transparency and maximum impact on research progress and patient care. The journal is dedicated to publishing high quality, peer reviewed medical research in all disciplines and therapeutic areas of cardiovascular medicine. Research is published across all study phases and designs, from study protocols to phase I trials to meta-analyses, including small or specialist studies. Opinionated discussions on controversial topics are welcomed. Open Heart aims to operate a fast submission and review process with continuous publication online, to ensure timely, up-to-date research is available worldwide. The journal adheres to a rigorous and transparent peer review process, and all articles go through a statistical assessment to ensure robustness of the analyses. Open Heart is an official journal of the British Cardiovascular Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信