David F Nippa, Alex T Müller, Kenneth Atz, David B Konrad, Uwe Grether, Rainer E Martin, Gisbert Schneider
{"title":"Simple User-Friendly Reaction Format.","authors":"David F Nippa, Alex T Müller, Kenneth Atz, David B Konrad, Uwe Grether, Rainer E Martin, Gisbert Schneider","doi":"10.1002/minf.202400361","DOIUrl":null,"url":null,"abstract":"<p><p>Utilizing the growing wealth of chemical reaction data can boost synthesis planning and increase success rates. Yet, the effectiveness of machine learning tools for retrosynthesis planning and forward reaction prediction relies on accessible, well-curated data presented in a structured format. Although some public and licensed reaction databases exist, they often lack essential information about reaction conditions. To address this issue and promote the principles of findable, accessible, interoperable, and reusable (FAIR) data reporting and sharing, we introduce the Simple User-Friendly Reaction Format (SURF). SURF standardizes the documentation of reaction data through a structured tabular format, requiring only a basic understanding of spreadsheets. This format enables chemists to record the synthesis of molecules in a format that is understandable by both humans and machines, which facilitates seamless sharing and integration directly into machine learning pipelines. SURF files are designed to be interoperable, easily imported into relational databases, and convertible into other formats. This complements existing initiatives like the Open Reaction Database (ORD) and Unified Data Model (UDM). At Roche, SURF plays a crucial role in democratizing FAIR reaction data sharing and expediting the chemical synthesis process.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 1","pages":"e202400361"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755691/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400361","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Utilizing the growing wealth of chemical reaction data can boost synthesis planning and increase success rates. Yet, the effectiveness of machine learning tools for retrosynthesis planning and forward reaction prediction relies on accessible, well-curated data presented in a structured format. Although some public and licensed reaction databases exist, they often lack essential information about reaction conditions. To address this issue and promote the principles of findable, accessible, interoperable, and reusable (FAIR) data reporting and sharing, we introduce the Simple User-Friendly Reaction Format (SURF). SURF standardizes the documentation of reaction data through a structured tabular format, requiring only a basic understanding of spreadsheets. This format enables chemists to record the synthesis of molecules in a format that is understandable by both humans and machines, which facilitates seamless sharing and integration directly into machine learning pipelines. SURF files are designed to be interoperable, easily imported into relational databases, and convertible into other formats. This complements existing initiatives like the Open Reaction Database (ORD) and Unified Data Model (UDM). At Roche, SURF plays a crucial role in democratizing FAIR reaction data sharing and expediting the chemical synthesis process.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.