Dennis Hein, Staffan Holmin, Vladimir Prochazka, Zhye Yin, Mats Danielsson, Mats Persson, Ge Wang
{"title":"Syn2Real: synthesis of CT image ring artifacts for deep learning-based correction.","authors":"Dennis Hein, Staffan Holmin, Vladimir Prochazka, Zhye Yin, Mats Danielsson, Mats Persson, Ge Wang","doi":"10.1088/1361-6560/adad2c","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. We strive to overcome the challenges posed by ring artifacts in x-ray computed tomography (CT) by developing a novel approach for generating training data for deep learning-based methods. Training such networks require large, high quality, datasets that are often generated in the data domain, time-consuming and expensive. Our objective is to develop a technique for synthesizing realistic ring artifacts directly in the image domain, enabling scalable production of training data without relying on specific imaging system physics.<i>Approach</i>. We develop 'Syn2Real,' a computationally efficient pipeline that generates realistic ring artifacts directly in the image domain. To demonstrate the effectiveness of our approach, we train two versions of UNet, vanilla and a high capacity version with self-attention layers that we call UNetpp, withℓ2and perceptual losses, as well as a diffusion model, on energy-integrating CT images with and without these synthetic ring artifacts.<i>Main Results.</i>Despite being trained on conventional single-energy CT images, our models effectively correct ring artifacts across various monoenergetic images, at different energy levels and slice thicknesses, from a prototype photon-counting CT system. This generalizability validates the realism and versatility of our ring artifact generation process.<i>Significance.</i>Ring artifacts in x-ray CT pose a unique challenge to image quality and clinical utility. By focusing on data generation, our work provides a foundation for developing more robust and adaptable ring artifact correction methods for pre-clinical, clinical and other CT applications.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adad2c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. We strive to overcome the challenges posed by ring artifacts in x-ray computed tomography (CT) by developing a novel approach for generating training data for deep learning-based methods. Training such networks require large, high quality, datasets that are often generated in the data domain, time-consuming and expensive. Our objective is to develop a technique for synthesizing realistic ring artifacts directly in the image domain, enabling scalable production of training data without relying on specific imaging system physics.Approach. We develop 'Syn2Real,' a computationally efficient pipeline that generates realistic ring artifacts directly in the image domain. To demonstrate the effectiveness of our approach, we train two versions of UNet, vanilla and a high capacity version with self-attention layers that we call UNetpp, withℓ2and perceptual losses, as well as a diffusion model, on energy-integrating CT images with and without these synthetic ring artifacts.Main Results.Despite being trained on conventional single-energy CT images, our models effectively correct ring artifacts across various monoenergetic images, at different energy levels and slice thicknesses, from a prototype photon-counting CT system. This generalizability validates the realism and versatility of our ring artifact generation process.Significance.Ring artifacts in x-ray CT pose a unique challenge to image quality and clinical utility. By focusing on data generation, our work provides a foundation for developing more robust and adaptable ring artifact correction methods for pre-clinical, clinical and other CT applications.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry