Hyphenation of 2D NMR With Hydrogenative PHIP

IF 1.9 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Bono O. Jimmink, Marco Tessari, Arno P. M. Kentgens
{"title":"Hyphenation of 2D NMR With Hydrogenative PHIP","authors":"Bono O. Jimmink,&nbsp;Marco Tessari,&nbsp;Arno P. M. Kentgens","doi":"10.1002/mrc.5510","DOIUrl":null,"url":null,"abstract":"<p>Parahydrogen induced polarisation (PHIP) is often used to enhance the sensitivity of NMR, with the purpose of extending the applicability of the technique. Nuclear spin hyperpolarisation obtained via PHIP is generally localised on the protons derived from the addition of para-enriched hydrogen to an unsaturated substrate. This limitation has been previously addressed by pulse schemes that can spread this hyperpolarised magnetisation through the entire network of J-coupled protons in the product molecule. Here, we extend this approach, by implementing 2D NMR spectroscopy on such network of hyperpolarised protons. This novel approach to 2D acquisition during parahydrogenation allows information to be gained from the entirety of a molecule, quicker and/or at lower concentrations than by conventional NMR. The efficacy of the method is exemplified by performing a 2D TOCSY experiment during hydrogenative PHIP, using 2-pentyn-1-ol as a substrate. A 2D spectrum was obtained in a few minutes at micromolar concentration, demonstrating the applicability of this methodology.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"63 4","pages":"278-282"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5510","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5510","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Parahydrogen induced polarisation (PHIP) is often used to enhance the sensitivity of NMR, with the purpose of extending the applicability of the technique. Nuclear spin hyperpolarisation obtained via PHIP is generally localised on the protons derived from the addition of para-enriched hydrogen to an unsaturated substrate. This limitation has been previously addressed by pulse schemes that can spread this hyperpolarised magnetisation through the entire network of J-coupled protons in the product molecule. Here, we extend this approach, by implementing 2D NMR spectroscopy on such network of hyperpolarised protons. This novel approach to 2D acquisition during parahydrogenation allows information to be gained from the entirety of a molecule, quicker and/or at lower concentrations than by conventional NMR. The efficacy of the method is exemplified by performing a 2D TOCSY experiment during hydrogenative PHIP, using 2-pentyn-1-ol as a substrate. A 2D spectrum was obtained in a few minutes at micromolar concentration, demonstrating the applicability of this methodology.

Abstract Image

二维核磁共振与氢化PHIP的连字符。
对氢诱导极化(PHIP)常被用于提高核磁共振的灵敏度,目的是扩大该技术的适用性。通过PHIP获得的核自旋超极化通常定位于由向不饱和底物添加para-富集氢而产生的质子上。这一限制先前已经通过脉冲方案得到解决,该方案可以通过产物分子中j偶联质子的整个网络传播这种超极化磁化。在这里,我们通过在这种超极化质子网络上实施二维核磁共振波谱来扩展这种方法。与传统的核磁共振相比,这种在对氢化过程中获取二维信息的新方法可以更快、更低浓度地从整个分子中获得信息。以2-戊烯-1-醇为底物,在加氢PHIP过程中进行了二维TOCSY实验,验证了该方法的有效性。在几分钟内获得了微摩尔浓度下的二维光谱,证明了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
10.00%
发文量
99
审稿时长
1 months
期刊介绍: MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published. The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信