Chemoprotective Potential of Cyanidin-3-Glucoside Against 1,2-Dimethylhydrazine-Induced Colorectal Cancer: Modulation of NF-κB and Bcl-2/Bax/Caspase Pathway

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Miao Wang, Xiaoyong Wang
{"title":"Chemoprotective Potential of Cyanidin-3-Glucoside Against 1,2-Dimethylhydrazine-Induced Colorectal Cancer: Modulation of NF-κB and Bcl-2/Bax/Caspase Pathway","authors":"Miao Wang,&nbsp;Xiaoyong Wang","doi":"10.1002/jbt.70125","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Colorectal cancer (CRC) represents a significant global health challenge, with approximately 1.8 million new cases diagnosed annually and a mortality toll exceeding 881,000 lives each year. This study aimed to evaluate the chemoprotective efficacy of Cyanidin-3-glucoside (C3G) in a rat model of CRC induced by 1,2-dimethylhydrazine (DMH). Rats were stratified into groups and administered C3G at doses of 10 and 15 mg/kg following DMH exposure to initiate CRC. Key parameters, including organ weights, tumor burdens, and biochemical markers, were meticulously assessed. Administration of C3G significantly restored body weight while reducing the weights of colon and spleen tissues. Moreover, C3G treatment substantially suppressed tumor incidence and weight in DMH-induced CRC rats. Biochemical analysis revealed that C3G markedly reduced levels of CFA, CA19.9, LDH, and nitric oxide (NO). It also modulated lipid profiles, antioxidant activities, and the expression of both Phase I and II enzymes. Inflammatory mediators, including TNF-α, IL-1β, IL-1α, IL-2, IL-4, IL-6, IL-10, IL-12, and IL-17, were significantly downregulated. Notably, C3G inhibited inflammatory markers such as COX-2, PGE2, iNOS, and NF-κB while promoting Caspase-3, -6, and -9 activity. Furthermore, it regulated the Bax/Bcl-2 apoptotic axis, reducing the Bcl-2/Bax ratio. Cyanidin-3-glucoside demonstrated potent chemopreventive effects against colorectal cancer in this experimental model. Its mechanism of action is likely mediated through modulation of NF-κB and the Bcl-2/Bax/Caspase pathway, suggesting its potential as a therapeutic agent in CRC management.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70125","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) represents a significant global health challenge, with approximately 1.8 million new cases diagnosed annually and a mortality toll exceeding 881,000 lives each year. This study aimed to evaluate the chemoprotective efficacy of Cyanidin-3-glucoside (C3G) in a rat model of CRC induced by 1,2-dimethylhydrazine (DMH). Rats were stratified into groups and administered C3G at doses of 10 and 15 mg/kg following DMH exposure to initiate CRC. Key parameters, including organ weights, tumor burdens, and biochemical markers, were meticulously assessed. Administration of C3G significantly restored body weight while reducing the weights of colon and spleen tissues. Moreover, C3G treatment substantially suppressed tumor incidence and weight in DMH-induced CRC rats. Biochemical analysis revealed that C3G markedly reduced levels of CFA, CA19.9, LDH, and nitric oxide (NO). It also modulated lipid profiles, antioxidant activities, and the expression of both Phase I and II enzymes. Inflammatory mediators, including TNF-α, IL-1β, IL-1α, IL-2, IL-4, IL-6, IL-10, IL-12, and IL-17, were significantly downregulated. Notably, C3G inhibited inflammatory markers such as COX-2, PGE2, iNOS, and NF-κB while promoting Caspase-3, -6, and -9 activity. Furthermore, it regulated the Bax/Bcl-2 apoptotic axis, reducing the Bcl-2/Bax ratio. Cyanidin-3-glucoside demonstrated potent chemopreventive effects against colorectal cancer in this experimental model. Its mechanism of action is likely mediated through modulation of NF-κB and the Bcl-2/Bax/Caspase pathway, suggesting its potential as a therapeutic agent in CRC management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信