Beneficial effects on T cells by photodynamic therapy with talaporfin enhance cancer immunotherapy.

IF 4.8 4区 医学 Q2 IMMUNOLOGY
Ehab M Ezzaldeen, Tomonori Yaguchi, Ryotaro Imagawa, Mohamed A Soltan, Akira Hirata, Kosaku Murakami, Hirotake Tsukamoto, Manabu Muto, Tasuku Honjo, Kenji Chamoto
{"title":"Beneficial effects on T cells by photodynamic therapy with talaporfin enhance cancer immunotherapy.","authors":"Ehab M Ezzaldeen, Tomonori Yaguchi, Ryotaro Imagawa, Mohamed A Soltan, Akira Hirata, Kosaku Murakami, Hirotake Tsukamoto, Manabu Muto, Tasuku Honjo, Kenji Chamoto","doi":"10.1093/intimm/dxaf003","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT), a local cancer treatment using photosensitizers, has been reported to enhance antitumor immune responses by inducing immunogenic cell death. Although several studies have demonstrated the synergistic antitumor effects of PDT and immune checkpoint blockage (ICB), the detailed underlying mechanisms remain poorly understood. In this study, we investigated the immunological effects of PDT with talaporfin (Tal-PDT), a clinically approved photosensitizer, using bilateral tumor-bearing mouse models. Treatment with Tal-PDT on the tumor on one side of the mouse resulted in tumor growth inhibition on the untreated opposite side. This phenomenon, accompanied by tumor antigen-specific immune reactions, is indicative of an abscopal effect. When combined with anti PD-L1 Ab, synergistic antitumor effects were observed on both the laser-treated and untreated sides. Mechanistically, Tal-PDT enhanced the induction of XCR-1+ dendritic cells in the proximal draining lymph node likely through the induction of ferroptosis in tumor cells. This, in turn, led to the systemic generation of precursor-exhausted CD8+ T cells. Moreover, talaporfin was selectively incorporated into tumor cells rather than into tumor-infiltrating T cells in vivo, leading to targeted tumor killing while preserving T cells. These beneficial effects of Tal-PDT on anti-tumor immunity collectively enhance ICB cancer immunotherapy. Our study demonstrates the potential of combining Tal-PDT with ICB therapy for clinical applications.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/intimm/dxaf003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy (PDT), a local cancer treatment using photosensitizers, has been reported to enhance antitumor immune responses by inducing immunogenic cell death. Although several studies have demonstrated the synergistic antitumor effects of PDT and immune checkpoint blockage (ICB), the detailed underlying mechanisms remain poorly understood. In this study, we investigated the immunological effects of PDT with talaporfin (Tal-PDT), a clinically approved photosensitizer, using bilateral tumor-bearing mouse models. Treatment with Tal-PDT on the tumor on one side of the mouse resulted in tumor growth inhibition on the untreated opposite side. This phenomenon, accompanied by tumor antigen-specific immune reactions, is indicative of an abscopal effect. When combined with anti PD-L1 Ab, synergistic antitumor effects were observed on both the laser-treated and untreated sides. Mechanistically, Tal-PDT enhanced the induction of XCR-1+ dendritic cells in the proximal draining lymph node likely through the induction of ferroptosis in tumor cells. This, in turn, led to the systemic generation of precursor-exhausted CD8+ T cells. Moreover, talaporfin was selectively incorporated into tumor cells rather than into tumor-infiltrating T cells in vivo, leading to targeted tumor killing while preserving T cells. These beneficial effects of Tal-PDT on anti-tumor immunity collectively enhance ICB cancer immunotherapy. Our study demonstrates the potential of combining Tal-PDT with ICB therapy for clinical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International immunology
International immunology 医学-免疫学
CiteScore
9.30
自引率
2.30%
发文量
51
审稿时长
6-12 weeks
期刊介绍: International Immunology is an online only (from Jan 2018) journal that publishes basic research and clinical studies from all areas of immunology and includes research conducted in laboratories throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信