Jarne Pauwels, Tessa Van de Steene, Jana Van de Velde, Freya De Muyer, Danaë De Pauw, Femke Baeke, Sven Eyckerman, Kris Gevaert
{"title":"Filter-Aided Extracellular Vesicle Enrichment (FAEVEr) for Proteomics.","authors":"Jarne Pauwels, Tessa Van de Steene, Jana Van de Velde, Freya De Muyer, Danaë De Pauw, Femke Baeke, Sven Eyckerman, Kris Gevaert","doi":"10.1016/j.mcpro.2025.100907","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs), membrane-delimited nanovesicles that are secreted by cells into the extracellular environment, are gaining substantial interest due to their involvement in cellular homeostasis and their contribution to disease pathology. The latter in particular has led to an exponential increase in interest in EVs as they are considered to be circulating packages containing potential biomarkers and are also a possible biological means to deliver drugs in a cell-specific manner. However, several challenges hamper straightforward proteome analysis of EVs as they are generally low abundant and reside in complex biological matrices. These matrices typically contain abundant proteins at concentrations that vastly exceed the concentrations of proteins found in the EV proteome. Therefore, extensive EV isolation and purification protocols are imperative and many have been developed, including (density) ultracentrifugation, size-exclusion, and precipitation methods. Here, we describe filter-aided extracellular vesicle enrichment (FAEVEr) as an approach based on 300 kDa molecular weight cutoff filtration that allows the processing of multiple samples in parallel within a reasonable time frame and at moderate cost. We demonstrate that FAEVEr is capable of quantitatively retaining EV particles on filters, while allowing extensive washing with the mild detergent Tween-20 to remove interfering non-EV proteins. The retained particles are directly lysed on the filter for a complete recovery of the EV protein cargo toward proteome analysis. Here, we validate and optimize FAEVEr on recombinant EV material and apply it on conditioned medium as well as on complex bovine serum, human plasma, and urine. Our results indicate that EVs isolated from MCF7 cells cultured with or without serum have a drastic different proteome because of nutrient deprivation.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100907"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872570/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100907","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles (EVs), membrane-delimited nanovesicles that are secreted by cells into the extracellular environment, are gaining substantial interest due to their involvement in cellular homeostasis and their contribution to disease pathology. The latter in particular has led to an exponential increase in interest in EVs as they are considered to be circulating packages containing potential biomarkers and are also a possible biological means to deliver drugs in a cell-specific manner. However, several challenges hamper straightforward proteome analysis of EVs as they are generally low abundant and reside in complex biological matrices. These matrices typically contain abundant proteins at concentrations that vastly exceed the concentrations of proteins found in the EV proteome. Therefore, extensive EV isolation and purification protocols are imperative and many have been developed, including (density) ultracentrifugation, size-exclusion, and precipitation methods. Here, we describe filter-aided extracellular vesicle enrichment (FAEVEr) as an approach based on 300 kDa molecular weight cutoff filtration that allows the processing of multiple samples in parallel within a reasonable time frame and at moderate cost. We demonstrate that FAEVEr is capable of quantitatively retaining EV particles on filters, while allowing extensive washing with the mild detergent Tween-20 to remove interfering non-EV proteins. The retained particles are directly lysed on the filter for a complete recovery of the EV protein cargo toward proteome analysis. Here, we validate and optimize FAEVEr on recombinant EV material and apply it on conditioned medium as well as on complex bovine serum, human plasma, and urine. Our results indicate that EVs isolated from MCF7 cells cultured with or without serum have a drastic different proteome because of nutrient deprivation.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes