Anti-inflammatory and antioxidant properties of oleuropein in human keratinocytes characterized by bottom-up proteomics.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Frontiers in Pharmacology Pub Date : 2025-01-08 eCollection Date: 2024-01-01 DOI:10.3389/fphar.2024.1496078
Huifang Li, Ni Deng, Jiayi Yang, Yang Zhao, Xiaoxuan Jin, Ang Cai, Navindra P Seeram, Hang Ma, Dongli Li, Huilan Yang, Chang Liu
{"title":"Anti-inflammatory and antioxidant properties of oleuropein in human keratinocytes characterized by bottom-up proteomics.","authors":"Huifang Li, Ni Deng, Jiayi Yang, Yang Zhao, Xiaoxuan Jin, Ang Cai, Navindra P Seeram, Hang Ma, Dongli Li, Huilan Yang, Chang Liu","doi":"10.3389/fphar.2024.1496078","DOIUrl":null,"url":null,"abstract":"<p><p>Oleuropein is a phenolic compound commonly found in cosmetic ingredients including olive leaves and jasmine flowers with various skin-beneficial effects. Here, we evaluated oleuropein's anti-inflammatory and antioxidant activities in human skin cells. In a cell-based inflammasome model with human monocytes (THP-1 cells), oleuropein (12-200 µM) reduced proinflammatory cytokine interleukin (IL)-6 by 38.8%-45.5%, respectively. Oleuropein (50 and 100 µM) also alleviated oxidative stress in keratinocytes (HaCaT cells) by reducing H<sub>2</sub>O<sub>2</sub>-induced cell death by 6.4% and 9.2%, respectively. Additionally, biological evaluations revealed that oleuropein's antioxidant effects were attributed to its mitigation of reactive oxygen species in HaCaT cells. Furthermore, a multiplexed gene assay identified IL-1β and thioredoxin-interacting proteins as potential molecular targets involved in oleuropein's protective effects in HaCaT cells. This was supported by findings from several cellular assays showing that oleuropein reduced the level of IL-1β and inhibited the activity of caspase-1/IL-1 converting enzyme, as well as ameliorated pyroptosis in HaCaT cells. Moreover, a bottom-up proteomics study was conducted to explore potential molecular targets and signaling pathways involved in oleuropein's antioxidant activities. Taken together, findings from this study expand the understanding of oleuropein's skin protective effects against oxidative and inflammatory stresses, which support that oleuropein is a promising natural cosmeceutical for skincare applications.</p>","PeriodicalId":12491,"journal":{"name":"Frontiers in Pharmacology","volume":"15 ","pages":"1496078"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751055/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphar.2024.1496078","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Oleuropein is a phenolic compound commonly found in cosmetic ingredients including olive leaves and jasmine flowers with various skin-beneficial effects. Here, we evaluated oleuropein's anti-inflammatory and antioxidant activities in human skin cells. In a cell-based inflammasome model with human monocytes (THP-1 cells), oleuropein (12-200 µM) reduced proinflammatory cytokine interleukin (IL)-6 by 38.8%-45.5%, respectively. Oleuropein (50 and 100 µM) also alleviated oxidative stress in keratinocytes (HaCaT cells) by reducing H2O2-induced cell death by 6.4% and 9.2%, respectively. Additionally, biological evaluations revealed that oleuropein's antioxidant effects were attributed to its mitigation of reactive oxygen species in HaCaT cells. Furthermore, a multiplexed gene assay identified IL-1β and thioredoxin-interacting proteins as potential molecular targets involved in oleuropein's protective effects in HaCaT cells. This was supported by findings from several cellular assays showing that oleuropein reduced the level of IL-1β and inhibited the activity of caspase-1/IL-1 converting enzyme, as well as ameliorated pyroptosis in HaCaT cells. Moreover, a bottom-up proteomics study was conducted to explore potential molecular targets and signaling pathways involved in oleuropein's antioxidant activities. Taken together, findings from this study expand the understanding of oleuropein's skin protective effects against oxidative and inflammatory stresses, which support that oleuropein is a promising natural cosmeceutical for skincare applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Pharmacology
Frontiers in Pharmacology PHARMACOLOGY & PHARMACY-
CiteScore
7.80
自引率
8.90%
发文量
5163
审稿时长
14 weeks
期刊介绍: Frontiers in Pharmacology is a leading journal in its field, publishing rigorously peer-reviewed research across disciplines, including basic and clinical pharmacology, medicinal chemistry, pharmacy and toxicology. Field Chief Editor Heike Wulff at UC Davis is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信