Characterisation of periorbital mechanical allodynia in the reserpine-induced fibromyalgia model in mice: The role of the Schwann cell TRPA1/NOX1 signalling pathway.
Evelyne da Silva Brum, Lorenzo Landini, Daniel Souza Monteiro de Araújo, Matilde Marini, Pierangelo Geppetti, Romina Nassini, Francesco De Logu, Sara Marchesan Oliveira
{"title":"Characterisation of periorbital mechanical allodynia in the reserpine-induced fibromyalgia model in mice: The role of the Schwann cell TRPA1/NOX1 signalling pathway.","authors":"Evelyne da Silva Brum, Lorenzo Landini, Daniel Souza Monteiro de Araújo, Matilde Marini, Pierangelo Geppetti, Romina Nassini, Francesco De Logu, Sara Marchesan Oliveira","doi":"10.1016/j.freeradbiomed.2025.01.040","DOIUrl":null,"url":null,"abstract":"<p><p>Fibromyalgia (FM) is a complex and multifaceted condition characterized by a range of clinical symptoms, including widespread pain and a strong association with migraine headaches. Recent findings have underscored the role of oxidative stress and transient receptor potential ankyrin 1 (TRPA1) channel in migraine and FM. However, the precise mechanisms underlying the comorbidity between migraine and FM are unclear. Periorbital mechanical allodynia (PMA), which recapitulates one of the major symptoms of migraine, and the feed-forward mechanism driven by reactive oxygen species and TRPA1, were investigated in a reserpine-induced FM model in C57BL/6J mice, employing pharmacological interventions and genetic approaches. Reserpine-treated mice developed PMA (which was alleviated by antimigraine drugs) and increased endoneurial macrophages and oxidative stress markers in the trigeminal nerve tissues (neuroinflammation). These responses were absent upon macrophage depletion and by pharmacological inhibition or global genetic deletion of the TRPA1 channel. Furthermore, selective silencing of TRPA1 in Schwann cells attenuated both reserpine-induced PMA and neuroinflammation, while selective silencing of TRPA1 in sensory neurons reduced PMA but not neuroinflammation. In reserpine-treated mice, Schwann cell TRPA1 promoted NADPH oxidase 1-mediated reactive oxygen species generation and macrophage increase in the mouse trigeminal nerve, which sustains PMA. Targeting TRPA1 channels in Schwann cells could offer a novel therapeutic strategy for FM-related headaches.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.01.040","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fibromyalgia (FM) is a complex and multifaceted condition characterized by a range of clinical symptoms, including widespread pain and a strong association with migraine headaches. Recent findings have underscored the role of oxidative stress and transient receptor potential ankyrin 1 (TRPA1) channel in migraine and FM. However, the precise mechanisms underlying the comorbidity between migraine and FM are unclear. Periorbital mechanical allodynia (PMA), which recapitulates one of the major symptoms of migraine, and the feed-forward mechanism driven by reactive oxygen species and TRPA1, were investigated in a reserpine-induced FM model in C57BL/6J mice, employing pharmacological interventions and genetic approaches. Reserpine-treated mice developed PMA (which was alleviated by antimigraine drugs) and increased endoneurial macrophages and oxidative stress markers in the trigeminal nerve tissues (neuroinflammation). These responses were absent upon macrophage depletion and by pharmacological inhibition or global genetic deletion of the TRPA1 channel. Furthermore, selective silencing of TRPA1 in Schwann cells attenuated both reserpine-induced PMA and neuroinflammation, while selective silencing of TRPA1 in sensory neurons reduced PMA but not neuroinflammation. In reserpine-treated mice, Schwann cell TRPA1 promoted NADPH oxidase 1-mediated reactive oxygen species generation and macrophage increase in the mouse trigeminal nerve, which sustains PMA. Targeting TRPA1 channels in Schwann cells could offer a novel therapeutic strategy for FM-related headaches.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.