Predicting transcriptional changes induced by molecules with MiTCP.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Kaiyuan Yang, Jiabei Cheng, Shenghao Cao, Xiaoyong Pan, Hong-Bin Shen, Ye Yuan
{"title":"Predicting transcriptional changes induced by molecules with MiTCP.","authors":"Kaiyuan Yang, Jiabei Cheng, Shenghao Cao, Xiaoyong Pan, Hong-Bin Shen, Ye Yuan","doi":"10.1093/bib/bbaf006","DOIUrl":null,"url":null,"abstract":"<p><p>Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction. After training on the L1000 dataset, MiTCP achieves an average Pearson correlation coefficient (PCC) of 0.482 on the test set and an average PCC of 0.801 for predicting the top 50 differentially expressed genes, which outperforms other existing methods. Furthermore, we used MiTCP to predict CTPs of three cancer drugs, palbociclib, irinotecan and goserelin, and performed gene enrichment analysis on the top differentially expressed genes and found that the enriched pathways and Gene Ontology terms are highly relevant to the corresponding diseases, which reveals the potential of MiTCP in drug development.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756340/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction. After training on the L1000 dataset, MiTCP achieves an average Pearson correlation coefficient (PCC) of 0.482 on the test set and an average PCC of 0.801 for predicting the top 50 differentially expressed genes, which outperforms other existing methods. Furthermore, we used MiTCP to predict CTPs of three cancer drugs, palbociclib, irinotecan and goserelin, and performed gene enrichment analysis on the top differentially expressed genes and found that the enriched pathways and Gene Ontology terms are highly relevant to the corresponding diseases, which reveals the potential of MiTCP in drug development.

预测MiTCP分子诱导的转录变化。
研究小分子诱导的细胞转录谱的变化可以显著促进我们对化学扰动下细胞状态改变和反应机制的理解,这在药物发现和筛选过程中起着至关重要的作用。考虑到实验测量需要大量的时间和成本,我们开发了一种基于深度学习的方法,称为分子诱导的转录变化预测器(MiTCP),以预测分子诱导的978个里程碑基因的转录谱(ctp)变化。MiTCP利用基于图神经网络的方法同时模拟分子结构表征和基因共表达关系,并将它们集成到CTP预测中。在L1000数据集上训练后,MiTCP在测试集上的平均Pearson相关系数(PCC)为0.482,预测前50个差异表达基因的平均PCC为0.801,优于现有的其他方法。此外,我们利用MiTCP预测了帕博西尼、伊立替康和戈瑟林三种抗癌药物的ctp,并对差异表达最高的基因进行了基因富集分析,发现富集的通路和gene Ontology术语与相应疾病高度相关,揭示了MiTCP在药物开发中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信