{"title":"Predicting transcriptional changes induced by molecules with MiTCP.","authors":"Kaiyuan Yang, Jiabei Cheng, Shenghao Cao, Xiaoyong Pan, Hong-Bin Shen, Ye Yuan","doi":"10.1093/bib/bbaf006","DOIUrl":null,"url":null,"abstract":"<p><p>Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction. After training on the L1000 dataset, MiTCP achieves an average Pearson correlation coefficient (PCC) of 0.482 on the test set and an average PCC of 0.801 for predicting the top 50 differentially expressed genes, which outperforms other existing methods. Furthermore, we used MiTCP to predict CTPs of three cancer drugs, palbociclib, irinotecan and goserelin, and performed gene enrichment analysis on the top differentially expressed genes and found that the enriched pathways and Gene Ontology terms are highly relevant to the corresponding diseases, which reveals the potential of MiTCP in drug development.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756340/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction. After training on the L1000 dataset, MiTCP achieves an average Pearson correlation coefficient (PCC) of 0.482 on the test set and an average PCC of 0.801 for predicting the top 50 differentially expressed genes, which outperforms other existing methods. Furthermore, we used MiTCP to predict CTPs of three cancer drugs, palbociclib, irinotecan and goserelin, and performed gene enrichment analysis on the top differentially expressed genes and found that the enriched pathways and Gene Ontology terms are highly relevant to the corresponding diseases, which reveals the potential of MiTCP in drug development.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.