RNAi-based ALOX15B silencing augments keratinocyte inflammation in vitro via EGFR/STAT1/JAK1 signalling.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Megan A Palmer, Rebecca Kirchhoff, Claudia Buerger, Yvonne Benatzy, Nils Helge Schebb, Bernhard Brüne
{"title":"RNAi-based ALOX15B silencing augments keratinocyte inflammation in vitro via EGFR/STAT1/JAK1 signalling.","authors":"Megan A Palmer, Rebecca Kirchhoff, Claudia Buerger, Yvonne Benatzy, Nils Helge Schebb, Bernhard Brüne","doi":"10.1038/s41419-025-07357-x","DOIUrl":null,"url":null,"abstract":"<p><p>Arachidonate 15-lipoxygenase type B (ALOX15B) peroxidises polyunsaturated fatty acids to their corresponding fatty acid hydroperoxides, which are subsequently reduced into hydroxy-fatty acids. A dysregulated abundance of these biological lipid mediators has been reported in the skin and blood of psoriatic compared to healthy individuals. RNAscope and immunohistochemistry revealed increased ALOX15B expression in lesional psoriasis samples. Using a cytokine cocktail containing IL-17A, interferon-gamma and tumour necrosis factor-alpha to produce a psoriasis-like phenotype, a role for ALOX15B in human epidermal keratinocyte inflammation was investigated. siRNA-mediated silencing of ALOX15B increased CCL2 expression and secretion. In addition to CCL2, secretion of CCL5 and CXCL10 were elevated in skin equivalents treated with lipoxygenase inhibitor ML351. Inhibition of the JAK1/STAT1 pathway reversed the enhanced CCL2 expression found with ALOX15B silencing. Previous studies have linked epidermal growth factor receptor (EGFR) inhibition with the upregulation of cytokines including CCL2, CCL5 and CXCL10. ALOX15B silencing reduced EGFR expression and inhibition of EGFR signalling potentiated the effect of ALOX15B silencing on increased CCL2, CCL5 and CXCL10 expression. Confirming previous findings, gene expression of cholesterol biosynthesis genes was reduced via reduced ERK phosphorylation. Reduced ERK phosphorylation was dependant on EGFR and NRF2 activation. Furthermore, plasma membrane lipids were investigated via confocal microscopy, revealing reduced cholesterol and lipid rafts. This study suggests a role for ALOX15B in keratinocyte inflammation through modulation of lipid peroxidation and the EGFR/JAK1/STAT1 signalling axis.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"39"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754432/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07357-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Arachidonate 15-lipoxygenase type B (ALOX15B) peroxidises polyunsaturated fatty acids to their corresponding fatty acid hydroperoxides, which are subsequently reduced into hydroxy-fatty acids. A dysregulated abundance of these biological lipid mediators has been reported in the skin and blood of psoriatic compared to healthy individuals. RNAscope and immunohistochemistry revealed increased ALOX15B expression in lesional psoriasis samples. Using a cytokine cocktail containing IL-17A, interferon-gamma and tumour necrosis factor-alpha to produce a psoriasis-like phenotype, a role for ALOX15B in human epidermal keratinocyte inflammation was investigated. siRNA-mediated silencing of ALOX15B increased CCL2 expression and secretion. In addition to CCL2, secretion of CCL5 and CXCL10 were elevated in skin equivalents treated with lipoxygenase inhibitor ML351. Inhibition of the JAK1/STAT1 pathway reversed the enhanced CCL2 expression found with ALOX15B silencing. Previous studies have linked epidermal growth factor receptor (EGFR) inhibition with the upregulation of cytokines including CCL2, CCL5 and CXCL10. ALOX15B silencing reduced EGFR expression and inhibition of EGFR signalling potentiated the effect of ALOX15B silencing on increased CCL2, CCL5 and CXCL10 expression. Confirming previous findings, gene expression of cholesterol biosynthesis genes was reduced via reduced ERK phosphorylation. Reduced ERK phosphorylation was dependant on EGFR and NRF2 activation. Furthermore, plasma membrane lipids were investigated via confocal microscopy, revealing reduced cholesterol and lipid rafts. This study suggests a role for ALOX15B in keratinocyte inflammation through modulation of lipid peroxidation and the EGFR/JAK1/STAT1 signalling axis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信