Analysis methods for covariate-constrained cluster randomized trials with time-to-event outcomes.

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Amy M Crisp, M Elizabeth Halloran, Matt D T Hitchings, Ira M Longini, Natalie E Dean
{"title":"Analysis methods for covariate-constrained cluster randomized trials with time-to-event outcomes.","authors":"Amy M Crisp, M Elizabeth Halloran, Matt D T Hitchings, Ira M Longini, Natalie E Dean","doi":"10.1186/s12874-025-02465-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cluster randomized trials, which often enroll a small number of clusters, can benefit from constrained randomization, selecting a final randomization scheme from a set of known, balanced randomizations. Previous literature has addressed the suitability of adjusting the analysis for the covariates that were balanced in the design phase when the outcome is continuous or binary. Here we extended this work to time-to-event outcomes by comparing two model-based tests and a newly derived permutation test. A current cluster randomized trial of vector control for the prevention of mosquito-borne disease in children in Mexico is used as a motivating example.</p><p><strong>Methods: </strong>We assessed type I error rates and power between simple randomization and constrained randomization using both prognostic and non-prognostic covariates via a simulation study. We compared the performance of a semi-parametric Cox proportional hazards model with robust variance, a mixed effects Cox model, and a permutation test utilizing deviance residuals.</p><p><strong>Results: </strong>The permutation test generally maintained nominal type I error-with the exception of the unadjusted analysis for constrained randomization-and also provided power comparable to the two Cox model-based tests. The model-based tests had inflated type I error when there were very few clusters per trial arm. All three methods performed well when there were 25 clusters per trial arm, as in the case of the motivating example.</p><p><strong>Conclusion: </strong>For time-to-event outcomes, covariate-constrained randomization was shown to improve power relative to simple randomization. The permutation test developed here was more robust to inflation of type I error compared to model-based tests. Gaining power by adjusting for covariates in the analysis phase was largely dependent on the number of clusters per trial arm.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"16"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-025-02465-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cluster randomized trials, which often enroll a small number of clusters, can benefit from constrained randomization, selecting a final randomization scheme from a set of known, balanced randomizations. Previous literature has addressed the suitability of adjusting the analysis for the covariates that were balanced in the design phase when the outcome is continuous or binary. Here we extended this work to time-to-event outcomes by comparing two model-based tests and a newly derived permutation test. A current cluster randomized trial of vector control for the prevention of mosquito-borne disease in children in Mexico is used as a motivating example.

Methods: We assessed type I error rates and power between simple randomization and constrained randomization using both prognostic and non-prognostic covariates via a simulation study. We compared the performance of a semi-parametric Cox proportional hazards model with robust variance, a mixed effects Cox model, and a permutation test utilizing deviance residuals.

Results: The permutation test generally maintained nominal type I error-with the exception of the unadjusted analysis for constrained randomization-and also provided power comparable to the two Cox model-based tests. The model-based tests had inflated type I error when there were very few clusters per trial arm. All three methods performed well when there were 25 clusters per trial arm, as in the case of the motivating example.

Conclusion: For time-to-event outcomes, covariate-constrained randomization was shown to improve power relative to simple randomization. The permutation test developed here was more robust to inflation of type I error compared to model-based tests. Gaining power by adjusting for covariates in the analysis phase was largely dependent on the number of clusters per trial arm.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信