Process intensification of the baculovirus expression vector system using a perfusion process with a low multiplicity of infection at high cell concentrations.
IF 2.5 3区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jort J Altenburg, Brenda E Juarez-Garza, Jelle van Keimpema, Linda van Oosten, Gorben P Pijlman, Monique M van Oers, René H Wijffels, Dirk E Martens
{"title":"Process intensification of the baculovirus expression vector system using a perfusion process with a low multiplicity of infection at high cell concentrations.","authors":"Jort J Altenburg, Brenda E Juarez-Garza, Jelle van Keimpema, Linda van Oosten, Gorben P Pijlman, Monique M van Oers, René H Wijffels, Dirk E Martens","doi":"10.1002/btpr.3527","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of new viruses and the spread of existing pathogens necessitate efficient vaccine production methods. The baculovirus expression vector system (BEVS) is an efficient and scalable system for subunit and virus-like particle vaccine production and gene therapy vectors. However, current production processes are often limited to low cell concentrations (1-4 × 10<sup>6</sup> cells/mL) in fed-batch mode. To improve the volumetric productivity of the BEVS, a medium exchange strategy was investigated. Screening experiments were performed to test baculovirus (expressing green fluorescent protein; GFP) infection and productivity of insect cell cultures infected at high cell concentration (1-2 × 10<sup>7</sup> cells/mL), showing that infection at high cell concentrations was possible with medium exchange. Next, duplicate perfusion runs with baculovirus infection were performed using a cell concentration upon infection (CCI) of 1.2 × 10<sup>7</sup> cells/mL and a multiplicity of infection (MOI) of 0.01, reaching a maximum viable cell concentration of 2.8 × 10<sup>7</sup> cells/mL and a maximum GFP production of 263 mg/L. The volumetric productivity of these perfusion runs was 4.8 times higher than for reference batch processes with a CCI of 3 × 10<sup>6</sup> cells/mL and an MOI of 1. These results demonstrate that process intensification can be achieved for the BEVS by implementing perfusion, resulting in a higher volumetric productivity.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e3527"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3527","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of new viruses and the spread of existing pathogens necessitate efficient vaccine production methods. The baculovirus expression vector system (BEVS) is an efficient and scalable system for subunit and virus-like particle vaccine production and gene therapy vectors. However, current production processes are often limited to low cell concentrations (1-4 × 106 cells/mL) in fed-batch mode. To improve the volumetric productivity of the BEVS, a medium exchange strategy was investigated. Screening experiments were performed to test baculovirus (expressing green fluorescent protein; GFP) infection and productivity of insect cell cultures infected at high cell concentration (1-2 × 107 cells/mL), showing that infection at high cell concentrations was possible with medium exchange. Next, duplicate perfusion runs with baculovirus infection were performed using a cell concentration upon infection (CCI) of 1.2 × 107 cells/mL and a multiplicity of infection (MOI) of 0.01, reaching a maximum viable cell concentration of 2.8 × 107 cells/mL and a maximum GFP production of 263 mg/L. The volumetric productivity of these perfusion runs was 4.8 times higher than for reference batch processes with a CCI of 3 × 106 cells/mL and an MOI of 1. These results demonstrate that process intensification can be achieved for the BEVS by implementing perfusion, resulting in a higher volumetric productivity.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.