Monolithic U-shaped crystal design for TOF-DOI detectors: a flat top versus a tapered top.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Miho Kiyokawa, Han Gyu Kang, Taiga Yamaya
{"title":"Monolithic U-shaped crystal design for TOF-DOI detectors: a flat top versus a tapered top.","authors":"Miho Kiyokawa, Han Gyu Kang, Taiga Yamaya","doi":"10.1088/2057-1976/adaced","DOIUrl":null,"url":null,"abstract":"<p><p>For brain-dedicated positron emission tomography (PET) scanners, depth-of-interaction (DOI) information is essential to achieve uniform spatial resolution across the field-of-view (FOV) by minimizing parallax error. Time-of-flight (TOF) information can enhance the image quality. In this study, we proposed a novel monolithic U-shaped crystal design that had a tapered geometry to achieve good coincidence timing resolution (CTR) and DOI resolution simultaneously. We compared a novel tapered U-shaped crystal design with a conventional flat-top geometry for PET detectors. Each crystal had outer dimensions of 5.85 × 2.75 × 15 mm<sup>3</sup>, with a 0.2 mm central gap forming physically isolated bottom surfaces (2.85 × 2.75 mm<sup>2</sup>). The novel U-shape crystal design with a tapered top roof resulted in the best CTR of 201 ± 3 ps, and DOI resolution of 3.1 ± 0.6 mm, which were better than flat top geometry. In the next study, we plan to optimize the crystal surface treatment and reflector to further improve the CTR and DOI resolution.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adaced","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

For brain-dedicated positron emission tomography (PET) scanners, depth-of-interaction (DOI) information is essential to achieve uniform spatial resolution across the field-of-view (FOV) by minimizing parallax error. Time-of-flight (TOF) information can enhance the image quality. In this study, we proposed a novel monolithic U-shaped crystal design that had a tapered geometry to achieve good coincidence timing resolution (CTR) and DOI resolution simultaneously. We compared a novel tapered U-shaped crystal design with a conventional flat-top geometry for PET detectors. Each crystal had outer dimensions of 5.85 × 2.75 × 15 mm3, with a 0.2 mm central gap forming physically isolated bottom surfaces (2.85 × 2.75 mm2). The novel U-shape crystal design with a tapered top roof resulted in the best CTR of 201 ± 3 ps, and DOI resolution of 3.1 ± 0.6 mm, which were better than flat top geometry. In the next study, we plan to optimize the crystal surface treatment and reflector to further improve the CTR and DOI resolution.

TOF-DOI探测器的单片u形晶体设计:平顶vs.锥形顶。
对于脑专用正电子发射断层扫描(PET)扫描仪来说,相互作用深度(DOI)信息对于通过最小化视差误差实现整个视场(FOV)的均匀空间分辨率至关重要。飞行时间(TOF)信息可以提高图像质量。在本研究中,我们提出了一种新颖的单片u形晶体设计,该晶体具有锥形几何形状,可以同时获得良好的符合时序分辨率(CTR)和DOI分辨率。我们比较了一种新颖的锥形u型晶体设计与传统的平顶几何形状的PET探测器。每个晶体的外部尺寸为5.85 × 2.75 × 15 mm³,中间有0.2 mm的间隙形成物理隔离的底表面(2.85 × 2.75 mm²)。采用新颖的u形晶体设计,顶顶锥形,CTR为201±3 ps, DOI分辨率为3.1±0.6 mm,优于平顶几何。在接下来的研究中,我们计划对晶体表面处理和反射器进行优化,进一步提高CTR和DOI分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信