{"title":"A comprehensive survey of scoring functions for protein docking models.","authors":"Azam Shirali, Vitalii Stebliankin, Ukesh Karki, Jimeng Shi, Prem Chapagain, Giri Narasimhan","doi":"10.1186/s12859-024-05991-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While protein-protein docking is fundamental to our understanding of how proteins interact, scoring protein-protein complex conformations is a critical component of successful docking programs. Without accurate and efficient scoring functions to differentiate between native and non-native binding complexes, the accuracy of current docking tools cannot be guaranteed. Although many innovative scoring functions have been proposed, a good scoring function for docking remains elusive. Deep learning models offer alternatives to using explicit empirical or mathematical functions for scoring protein-protein complexes.</p><p><strong>Results: </strong>In this study, we perform a comprehensive survey of the state-of-the-art scoring functions by considering the most popular and highly performant approaches, both classical and deep learning-based, for scoring protein-protein complexes. The methods were also compared based on their runtime as it directly impacts their use in large-scale docking applications.</p><p><strong>Conclusions: </strong>We evaluate the strengths and weaknesses of classical and deep learning-based approaches across seven public and popular datasets to aid researchers in understanding the progress made in this field.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"25"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755896/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05991-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: While protein-protein docking is fundamental to our understanding of how proteins interact, scoring protein-protein complex conformations is a critical component of successful docking programs. Without accurate and efficient scoring functions to differentiate between native and non-native binding complexes, the accuracy of current docking tools cannot be guaranteed. Although many innovative scoring functions have been proposed, a good scoring function for docking remains elusive. Deep learning models offer alternatives to using explicit empirical or mathematical functions for scoring protein-protein complexes.
Results: In this study, we perform a comprehensive survey of the state-of-the-art scoring functions by considering the most popular and highly performant approaches, both classical and deep learning-based, for scoring protein-protein complexes. The methods were also compared based on their runtime as it directly impacts their use in large-scale docking applications.
Conclusions: We evaluate the strengths and weaknesses of classical and deep learning-based approaches across seven public and popular datasets to aid researchers in understanding the progress made in this field.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.