Lutetium-177 labeled iPD-L1 as a novel immunomodulator for cancer-targeted radiotherapy

IF 4.4 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Myrna Luna-Gutiérrez, Erika Azorín-Vega, Rigoberto Oros-Pantoja, Blanca Ocampo-García, Pedro Cruz-Nova, Nallely Jiménez-Mancilla, Gerardo Bravo-Villegas, Clara Santos-Cuevas, Laura Meléndez-Alafort, Guillermina Ferro-Flores
{"title":"Lutetium-177 labeled iPD-L1 as a novel immunomodulator for cancer-targeted radiotherapy","authors":"Myrna Luna-Gutiérrez,&nbsp;Erika Azorín-Vega,&nbsp;Rigoberto Oros-Pantoja,&nbsp;Blanca Ocampo-García,&nbsp;Pedro Cruz-Nova,&nbsp;Nallely Jiménez-Mancilla,&nbsp;Gerardo Bravo-Villegas,&nbsp;Clara Santos-Cuevas,&nbsp;Laura Meléndez-Alafort,&nbsp;Guillermina Ferro-Flores","doi":"10.1186/s41181-025-00328-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Cancer immunotherapy is a relatively new approach to cancer treatment. Peptides that target specific pathways and cells involved in immunomodulation can potentially improve the efficacy of cancer therapy. Recently, we reported iPD-L1 as a novel inhibitor peptide that specifically targets the cancer cell ligand PD-L1 (programmed death ligand 1). PD-L1 is responsible for inhibiting the immune checkpoint protein PD-1 expressed by regulatory T cells. On the other hand, anti-PD-L1 immunotherapy in combination with external beam radiotherapy has shown improved outcomes in the treatment of breast and lung cancer. The aim of this research was to prepare <sup>177</sup>Lu-labeled iPD-L1 and to preclinically evaluate its radiotherapeutic potential and role as a tumor immunomodulator by measuring macrophage activation, IL-10, TGFβ, and PD-L1 expression in 4T1 triple-negative breast cancer cells and murine 4T1 tumors after treatment with <sup>177</sup>Lu-iPD-L1.</p><h3>Results</h3><p>The iPD-L1 ligand, characterized by UPLC mass, UV-Vis, and FT-IR spectroscopies, showed a chemical purity of 99%. The <sup>177</sup>Lu-iPD-L1 radiochemical purity was 98.9 ± 1.1%. In vitro and in vivo studies demonstrated radiotracer stability in human serum (&gt; 97% after 24 h evaluated by radio-HPLC), adequate affinity by the PDL1 protein (IC<sub>50</sub> = 4.21 nM), and specific detection for PD-L1 assessed in 4T1, HCT116, and AR42J cancer cells, in which PD-L1 expression was verified by immunofluorescence and Western Blot assays. After treatment with <sup>177</sup>Lu-iPD-L1 (0.4 Bq/cell), flow cytometry results showed a significant decrease in cell viability of 4T1 cells (dead 56.2%) compared to <sup>177</sup>LuCl<sub>3</sub> (dead 34.2%) and untreated cells (dead 9.4%). With high tumor uptake (6.97 ± 1.04%ID) and hepatobiliary and renal clearance, lutetium-177-labeled iPD-L1 delivered a tumor dose of 27 Gy/37 MBq and less than 0.36 Gy/37 MBq to non-source organs. PD-L1 positive tumors showed a significant increase in activated macrophages, PD-L1, IL-10, and TGFβ expression levels after <sup>177</sup>Lu-iPD-L1 treatment as evaluated by ELISA assay and immunohistochemistry.</p><h3>Conclusions</h3><p>Therefore, this study warrants further dosimetric and clinical studies to determine the immunomodulatory effect and therapeutic efficacy of <sup>177</sup>Lu-iPD-L1 in treating PD-L1-positive tumors in combination with anti-PD-1/PD-L1 immunotherapy protocols.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"10 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754567/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-025-00328-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Cancer immunotherapy is a relatively new approach to cancer treatment. Peptides that target specific pathways and cells involved in immunomodulation can potentially improve the efficacy of cancer therapy. Recently, we reported iPD-L1 as a novel inhibitor peptide that specifically targets the cancer cell ligand PD-L1 (programmed death ligand 1). PD-L1 is responsible for inhibiting the immune checkpoint protein PD-1 expressed by regulatory T cells. On the other hand, anti-PD-L1 immunotherapy in combination with external beam radiotherapy has shown improved outcomes in the treatment of breast and lung cancer. The aim of this research was to prepare 177Lu-labeled iPD-L1 and to preclinically evaluate its radiotherapeutic potential and role as a tumor immunomodulator by measuring macrophage activation, IL-10, TGFβ, and PD-L1 expression in 4T1 triple-negative breast cancer cells and murine 4T1 tumors after treatment with 177Lu-iPD-L1.

Results

The iPD-L1 ligand, characterized by UPLC mass, UV-Vis, and FT-IR spectroscopies, showed a chemical purity of 99%. The 177Lu-iPD-L1 radiochemical purity was 98.9 ± 1.1%. In vitro and in vivo studies demonstrated radiotracer stability in human serum (> 97% after 24 h evaluated by radio-HPLC), adequate affinity by the PDL1 protein (IC50 = 4.21 nM), and specific detection for PD-L1 assessed in 4T1, HCT116, and AR42J cancer cells, in which PD-L1 expression was verified by immunofluorescence and Western Blot assays. After treatment with 177Lu-iPD-L1 (0.4 Bq/cell), flow cytometry results showed a significant decrease in cell viability of 4T1 cells (dead 56.2%) compared to 177LuCl3 (dead 34.2%) and untreated cells (dead 9.4%). With high tumor uptake (6.97 ± 1.04%ID) and hepatobiliary and renal clearance, lutetium-177-labeled iPD-L1 delivered a tumor dose of 27 Gy/37 MBq and less than 0.36 Gy/37 MBq to non-source organs. PD-L1 positive tumors showed a significant increase in activated macrophages, PD-L1, IL-10, and TGFβ expression levels after 177Lu-iPD-L1 treatment as evaluated by ELISA assay and immunohistochemistry.

Conclusions

Therefore, this study warrants further dosimetric and clinical studies to determine the immunomodulatory effect and therapeutic efficacy of 177Lu-iPD-L1 in treating PD-L1-positive tumors in combination with anti-PD-1/PD-L1 immunotherapy protocols.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
8.70%
发文量
30
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信