Hong-Kun Dai, Jian-Ping Zheng, Qing Xiong, William L. Griffin, Philip E. Janney, Suzanne Y. O'Reilly
{"title":"Kimberlite segregation from an uppermost asthenospheric thermal boundary and the longevity of cold craton roots","authors":"Hong-Kun Dai, Jian-Ping Zheng, Qing Xiong, William L. Griffin, Philip E. Janney, Suzanne Y. O'Reilly","doi":"10.1016/j.chemgeo.2025.122621","DOIUrl":null,"url":null,"abstract":"Long-lived (>2.5 Ga) cratons usually preserve ancient cold and refractory mantle roots, but how the deep roots survive from recycling back to the convective mantle remains open to debate. Here, the mechanism for preservation of Archean mantle roots is explored using the major-, trace-element and Sr<ce:glyph name=\"sbnd\"></ce:glyph>Nd isotopic systematics of kimberlites, the asthenosphere-derived magmas under cratons. A case study on ∼480 Ma kimberlites of the North China Craton suggests that their segregation domains have pressures (∼5 GPa) shallower than the lower boundaries of typical craton roots and potential temperatures (<ce:italic>T</ce:italic><ce:inf loc=\"post\">p</ce:inf>) between those of the ambient asthenosphere (<ce:italic>T</ce:italic><ce:inf loc=\"post\">p</ce:inf> = ∼1400 °C) and the cold lithospheric roots of cratons (∼1200 °C). The dataset of primary kimberlites worldwide records similar temperature variation in their segregation domains, which likely represent the lowermost (asthenospheric) part of a thick thermal boundary layer between conductive lithosphere and convective asthenosphere. Our calculation on mantle viscosity suggests that the asthenospheric part of the thermal boundary layer would show marked viscosity increase due to thermal offset from normal mantle adiabat. The resultant resistant uppermost asthenosphere can serve as a protective sheath that can protect the cratonic roots from being eroded and removed. Our proposed model emphasizes the longevity of cratons provided simply by the thermal contrast between the cold craton roots and the asthenosphere.","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"301 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.chemgeo.2025.122621","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Long-lived (>2.5 Ga) cratons usually preserve ancient cold and refractory mantle roots, but how the deep roots survive from recycling back to the convective mantle remains open to debate. Here, the mechanism for preservation of Archean mantle roots is explored using the major-, trace-element and SrNd isotopic systematics of kimberlites, the asthenosphere-derived magmas under cratons. A case study on ∼480 Ma kimberlites of the North China Craton suggests that their segregation domains have pressures (∼5 GPa) shallower than the lower boundaries of typical craton roots and potential temperatures (Tp) between those of the ambient asthenosphere (Tp = ∼1400 °C) and the cold lithospheric roots of cratons (∼1200 °C). The dataset of primary kimberlites worldwide records similar temperature variation in their segregation domains, which likely represent the lowermost (asthenospheric) part of a thick thermal boundary layer between conductive lithosphere and convective asthenosphere. Our calculation on mantle viscosity suggests that the asthenospheric part of the thermal boundary layer would show marked viscosity increase due to thermal offset from normal mantle adiabat. The resultant resistant uppermost asthenosphere can serve as a protective sheath that can protect the cratonic roots from being eroded and removed. Our proposed model emphasizes the longevity of cratons provided simply by the thermal contrast between the cold craton roots and the asthenosphere.
期刊介绍:
Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry.
The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry.
Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry.
The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.